Research in Algorithms, Approximatiion and Applications

算法、逼近及应用研究

基本信息

  • 批准号:
    0430946
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

The main goals and the intellectual merit of the proposed research are to advance our understanding and ability to deal with computationally hard optimization problems, to expand the scope of our methodologies to facilitate e.ective decision making in multifaceted situations where multiple criteria come into play, and to formalize problems from other areas and address them rigorously using the most suitable algorithmic tools.One thrust of the proposed research concerns the development of a coherent algorithmic theory for multicriteria problems. Such problems are very common and have been mostly squeezed into an one-dimensional mold so far. Besides the general theory and algorithm that will be developed, several problems from databases involving resource and utility trade-o.s will be addressed in this light.A second thrust concerns the further development of the theory of hard approximation problems. A major objective is to understand and characterize the degree to which hard problems can be approximated, in particular, which problems can be approximated within a constant factor, independent of the size of the instance.The third thrust concerns issues in modeling and analysis of systems, and seeks to formulateand bring the relevant problems within the realm of algorithmic analysis.A broader impact of the proposed research is expected to be derived from the connections thatwill be pursued between the methodologies and tools from theoretical computer science, and theproblems and issues that arise in other areas, eg. databases and system analysis. It is expectedthat this will bene.t both sides.
本研究的主要目标和智力价值是提高我们处理计算困难的优化问题的理解和能力,扩大我们的方法范围,以促进在多重标准发挥作用的多方面情况下的有效决策,并将其他领域的问题形式化,并使用最合适的算法工具严格地解决它们。提出的研究的一个重点是关注多标准问题的连贯算法理论的发展。这样的问题是很常见的,到目前为止,大多是被挤进一个一维的模具。除了将开发的一般理论和算法外,数据库中涉及资源和效用交易的几个问题。我们将从这个角度来讨论S。第二个推动力涉及硬逼近问题理论的进一步发展。一个主要的目标是理解和描述困难问题可以近似的程度,特别是,哪些问题可以在一个常数因子内近似,与实例的大小无关。第三个推动力涉及系统建模和分析中的问题,并寻求将相关问题公式化并带入算法分析领域。拟议的研究的更广泛的影响预计将来自于理论计算机科学的方法和工具与其他领域出现的问题和问题之间的联系。数据库和系统分析。预计这将是有益的。两边都是T。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mihalis Yannakakis其他文献

Mihalis Yannakakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mihalis Yannakakis', 18)}}的其他基金

AF: Medium: Smoothed Analysis for Optimization and Games
AF:中:优化和游戏的平滑分析
  • 批准号:
    2107187
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
AF: Medium: New Frontiers in Equilibrium Computation
AF:中:平衡计算的新领域
  • 批准号:
    1703925
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
AF: Small: On the Complexity of Optimal Pricing and Mechanism Design
AF:小:论最优定价和机制设计的复杂性
  • 批准号:
    1423100
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AF: Small: Computational Aspects of Markets, Equilibria, and Fixed Points
AF:小:市场、均衡和不动点的计算方面
  • 批准号:
    1320654
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
AF: Small: Research on Equilibria, Fixed Points, and Approximation
AF:小:平衡、不动点和近似的研究
  • 批准号:
    1017955
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Research in Games, Fixpoints, and Approximation
博弈、不动点和近似研究
  • 批准号:
    0728736
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了