CAREER: Advancing the Theory and Practice of Meta-Learning with Applications in Physics
职业:通过物理学应用推进元学习的理论和实践
基本信息
- 批准号:0448542
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-15 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the field of meta-learning by investigating the relation between learning mechanisms and the tasks and domains where these mechanisms are applicable. An important activity of this project is to propose effective data structures and meta-features that characterize example distributions. We plan to extend model-based and information-theoretic characterizations, and to exploit multivariate density estimation techniques to generate a concise mapping of an example distribution. Results from this project will be used in the design and construction of meta-learning assistants that will be able to provide automatic and systematic user guidance for model selection and model ranking.This project is multidisciplinary in nature, with a particular emphasis on physics and astronomy. The principal area of application lies in the classification of Mars landscapes from geo-morphological features.A major goal of this project is to combine research and educational strategies aimed at the establishment of a Pattern Classification and Machine Learning Laboratory at the University of Houston. This laboratory will be used to analyze, learn, and perform predictions using real scientific data. It will also be used to help local youth, especially women and minorities, acquire a deep appreciation for science. Through the formation of science clubs and learning communities among high school and undergraduate students, this project strives to have a strong impact in fostering interest among young students in choosing scientific or technological paths as their professional career.
本项目的重点是元学习领域,通过研究学习机制与这些机制适用的任务和领域之间的关系。该项目的一个重要活动是提出有效的数据结构和元特征,以表征示例分布。我们计划扩展基于模型和信息理论的表征,并利用多元密度估计技术生成一个简洁的映射的例子分布。该项目的成果将用于设计和构建元学习助手,该助手将能够为模型选择和模型排名提供自动和系统的用户指导。该项目的一个主要目标是将联合收割机研究与教育战略结合起来,以便在休斯顿大学建立一个模式分类和机器学习实验室。这个实验室将用于分析,学习,并使用真实的科学数据进行预测。它还将用于帮助当地青年,特别是妇女和少数民族,获得对科学的深刻理解。通过在高中生和本科生中组建科学俱乐部和学习社区,该项目力求在培养青年学生选择科学或技术道路作为其职业生涯的兴趣方面产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Vilalta其他文献
Introduction to the Special Issue on Meta-Learning
- DOI:
10.1023/b:mach.0000015878.60765.42 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:2.900
- 作者:
Christophe Giraud-Carrier;Ricardo Vilalta;Pavel Brazdil - 通讯作者:
Pavel Brazdil
Model-based reasoning
基于模型的推理
- DOI:
10.1016/j.compedu.2012.11.014 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Michael Jackson;Janusz Wojtusiak;Dayne Freitag;Eugene Subbotsky;Hans M. Nordahl;Jens C. Thimm;John Burgoyne;Roberto Poli;Thomas R. Guskey;Michael Davison;J. Magnotti;Adam M. Goodman;Jeffrey S. Katz;L. Verschaffel;W. Dooren;B. Smedt;Sean A. Fulop;Melva R. Grant;Leonid I. Perlovsky;B. De Smedt;P. Ghesquière;Dariusz Plewczynski;Leily Ziglari;P. Birjandi;Scott Rick;Roberto Weber;N. Seel;Maike Luhmann;Michael Eid;A. Antonietti;Barbara Colombo;Hamish Coates;Ali Radloff;P. Pirnay;Dirk Ifenthaler;Edward Swing;Craig A Anderson;David Tzuriel;Norman M. Weinberger;David C. Riccio;Patrick K. Cullen;J. Tallet;Megan L. Hoffman;David A. Washburn;Iván Izquierdo;Jorge H. Medina;M. Cammarota;A. Podolskiy;Joke Torbeyns;J. Kranzler;P. A. Kirschner;F. Kirschner;Kenn Apel;Julie A. Wolter;J. Masterson;JungMi Lee;Stefan N Groesser;Sabine Al;Philip Barker;Paul Schaik;I. Cutica;Monica Bucciarelli;K. Pata;Anna Strasser;A. Guillot;N. Hoyek;Christian Collet;Maria Opfermann;Roger Azevedo;Detlev Leutner;Thomas C. Toppino;Alice Y. Kolb;David A. Kolb;P. Brazdil;Ricardo Vilalta;Carlos Soares;C. Giraud;Jeffrey W. Bloom;Tyler Volk;Marwan A. Dwairy;Richard A. Swanson;Johanna Pöysä;K. Luwel;Theo Hug;Angélique Martin;Nicolas Guéguen;Craig Hassed;Fabio Alivernini;Michael Herczeg;M. Mastropieri;T. Scruggs;Angelika Rieder;S. Castillo;Gerardo Ayala;R. Low;R. Babuška;Barbara C. Buckley;Henry Markovits;Sungho Kim;In;Michael J. Spector;A. Towse;Charlie N. Lewis;Brian Francis;David N. Rapp;Pratim Sengupta;Sidney D’Mello;Serge Brand;J. Patry;Cees Klaassen;Sieglinde Weyringer;Alfred Weinberger;Marilla D. Svinicki;Jane S. Vogler;Andrew J. Martin;John M. Keller;ChanMin Kim;Gabriele Wulf;Lynne E. Parker;Michael Wunder;Michael Littman;Lisa J. Lehmberg;C. Victor Fung;Hannele Niemi;Steven Reiss;Piet Desmet;F. Cornillie;Helmut M. Niegemann;Steffi Heidig;Dominic W. Massaro;Charles Fadel;Cheryl Lemke;R. Grabner;Michael D. Basil;Daniel R. Little;Stephan Lewandowsky;Parmjit Singh;Zheng Liu;Marcelo H. Ang;W. Seah;Jack Heller;C. Randles;Kenneth S. Aigen - 通讯作者:
Kenneth S. Aigen
Ricardo Vilalta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Vilalta', 18)}}的其他基金
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
0812372 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: A Statistical Learning Tool for the Analysis and Characterization of Mars Topography
协作研究:用于分析和表征火星地形的统计学习工具
- 批准号:
0431130 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Advancing Coding Theory Through the Lens of Pseudorandomness
NSF-BSF:AF:小:通过伪随机性的视角推进编码理论
- 批准号:
2231157 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Advancing Equity in Early Childhood Developmental Screening Through Item Response Theory and User-Centered Design
通过项目反应理论和以用户为中心的设计促进幼儿发展筛查的公平性
- 批准号:
10808542 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2246281 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Advancing Theory and Methodology for Tree-Based Algorithms in High Dimensions
推进高维树基算法的理论和方法
- 批准号:
2209975 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2212143 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Advancing Theory and Practice of Trustworthy Machine Learning via Bi-Level Optimization
合作研究:RI:小型:通过双层优化推进可信机器学习的理论和实践
- 批准号:
2207052 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Advancing Theory and Trust in Cognitive Systems
推进认知系统的理论和信任
- 批准号:
RGPIN-2022-04853 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Advancing Our Knowledge of the Transition Metal-Carbon Bond: Integrating Spectroscopy and Theory
增进我们对过渡金属-碳键的了解:光谱学和理论的结合
- 批准号:
2154121 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ADVANCING CLINICAL PRACTICE AND ESTABLISHING FOUNDATIONAL THEORY FOR AUDITORY FUNCTION IN INDIVIDUALS WITH DOWN SYNDROME
推进唐氏综合症患者听觉功能的临床实践并建立基础理论
- 批准号:
10352602 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别: