Nanostructured Electrode Materials for Electrochemical Supercapacitors

用于电化学超级电容器的纳米结构电极材料

基本信息

  • 批准号:
    0455994
  • 负责人:
  • 金额:
    $ 28.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the manufacturing and characterization of several nanostructured electrodes for electrochemical supercapacitors that exceed currently achieved energy storage capacity and display high charge/discharge rates. These electrodes are based on transition metal oxides and consist of four different nanostructures: (1) uniformly sized and unidirectionally aligned oxide nanorod arrays (perpendicularly standing on conductive substrate), (2) oxide nanotube arrays, (3) metal - oxide core-shell nanocable arrays, and (4) carbon cryogel - oxide nanocomposites. This research will take vanadium pentoxide as a model system to systematically study the influences of crystallinity, nanostructure and doping on intercalation capacity and charge/discharge kinetics. Core-shell nanocable arrays and carbon cryogel-oxide nanocomposites have both double layer supercapacitor and electrochemical pseudocapacitor characteristics, and thus promise significantly enhanced performance. The carbon cryogel-oxide nanocomposite is characterized by three-dimensional energy storage and release processes, while conventional electrochemical capacitors are inherently two dimensional systems. The energy stored in a three-dimensional electrode structure is larger than that in conventional capacitors. Other transition metal oxides including complex oxides, doped oxides, and amorphous oxides will also be explored for further enhancement of supercapacitor performance. If successful, this research will lead to the development of nanostructured electrodes with high energy storage capacity and fast charge/discharge rate with improved cyclic resistance. Additionally new manufacturing methods will be developed for the enhancement of material properties by careful design of nanostructures or microstructures and by precise control of composition. The study will result in a better fundamental understanding of the relationships between manufacturing, structure, composition, properties, and performance. The research will also broaden the application of nanostructures and nanomaterials by simply capitalizing the huge surface area and improved transport kinetics in nanostructures and nanomaterials without altering the physical properties associated with bulk materials. The benefit of this work also includes educating graduate and undergraduate students and attracting them into the field of energy related materials development and nanomanufacturing technology, and thus helping our nation stay in a leading position in this strategic field not only today but also in the future.
这项拨款为制造和表征几种纳米结构电极的电化学超级电容器提供了资金,这些电极超过了目前实现的能量存储容量,并显示出高充放电率。这些电极基于过渡金属氧化物,由四种不同的纳米结构组成:(1)尺寸均匀且单向排列的氧化物纳米棒阵列(垂直竖立在导电衬底上),(2)氧化物纳米管阵列,(3)金属-氧化物核-壳纳米阵列,以及(4)碳低温凝胶-氧化物纳米复合材料。本研究将以五氧化二钒为模型体系,系统研究结晶度、纳米结构和掺杂对插层容量和充放电动力学的影响。核壳纳米阵列和碳低温氧化物纳米复合材料同时具有双层超级电容器和电化学伪电容器的特性,因此有望显著提高性能。碳-低温-氧化物纳米复合材料具有三维能量存储和释放过程的特点,而传统的电化学电容器本质上是二维系统。存储在三维电极结构中的能量比传统电容器中的能量大。其他过渡金属氧化物包括复合氧化物、掺杂氧化物和非晶氧化物也将被进一步探索,以进一步提高超级电容器的性能。如果成功,这项研究将导致具有高储能容量和快速充放电速率的纳米结构电极的发展,并提高循环电阻。此外,将开发新的制造方法,通过精心设计纳米结构或微结构以及精确控制成分来增强材料性能。这项研究将使我们对制造、结构、组成、性能和性能之间的关系有一个更好的基本理解。该研究还将通过简单地利用纳米结构和纳米材料的巨大表面积和改善纳米结构和纳米材料的传输动力学,而不改变与块状材料相关的物理性质,从而扩大纳米结构和纳米材料的应用。这项工作的好处还包括教育研究生和本科生,并吸引他们进入能源相关材料开发和纳米制造技术领域,从而帮助我国在这一战略领域保持领先地位,不仅在今天,而且在未来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guozhong Cao其他文献

Surface spinel and interface oxygen vacancies enhanced lithium-rich layered oxides with excellent electrochemical performances
表面尖晶石和界面氧空位增强了富锂层状氧化物,具有优异的电化学性能
  • DOI:
    10.1016/j.cej.2022.136434
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Gaige Zhang;Min Chen;Caixing Li;Binhong Wu;Jiakun Chen;Wenjin Xiang;Xinyang Wen;Dehui Zhang;Guozhong Cao;Weishan Li
  • 通讯作者:
    Weishan Li
MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors
MoSe2 纳米片在石墨烯上垂直生长,并具有 Mo-C 键合,用于钠离子电容器
  • DOI:
    10.1016/j.nanoen.2018.03.002
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Xu Zhao;Wei Cai;Ying Yang;Xuedan Song;Zachary G. Neale;Yu Li;Jiehe Sui;Guozhong Cao
  • 通讯作者:
    Guozhong Cao
Interface Engineering Enhances Pseudocapacitive Contribution to Alkali Metal Ion Batteries
界面工程增强了碱金属离子电池的赝电容贡献
  • DOI:
    10.1021/acsaem.2c03779
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Xuefang Xie;Shuang Zhou;Guozhao Fang;Ji;e Lin;Yuanlang Wan;Guozhong Cao;Anqiang Pan
  • 通讯作者:
    Anqiang Pan
Titanium dioxide nanowires modified tin oxide hollow spheres for dye-sensitized solar cells
  • DOI:
    doi:10.1557/mrc.2016.34
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yajie Wang;Chengbin Fei;Rong Zhang;Lixue Guo;Ting Shen;Jianjun Tian;Guozhong Cao
  • 通讯作者:
    Guozhong Cao
Intralayer/interlayer spatial variation in silicon-doped lithium-rich manganese-based cathode for lattice oxygen fixing
用于晶格氧固定的硅掺杂富锂锰基层状正极的层内/层间空间变化
  • DOI:
    10.1016/j.jcis.2025.02.202
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Liuyang Zhao;Zian Huang;Shenao Ma;Hongfu Tang;Ruixue Tian;Hao Huang;Aimin Wu;Aikui Li;Guozhong Cao
  • 通讯作者:
    Guozhong Cao

Guozhong Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guozhong Cao', 18)}}的其他基金

I-Corps: Battery Data Management and Analytics Platform
I-Corps:电池数据管理和分析平台
  • 批准号:
    1927078
  • 财政年份:
    2019
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Standard Grant
Interface chemistry and electrochemistry in magnesium-ion batteries
镁离子电池中的界面化学和电化学
  • 批准号:
    1803256
  • 财政年份:
    2018
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Standard Grant
Understanding the Impacts of Impurities on Processing
了解杂质对加工的影响
  • 批准号:
    1505902
  • 财政年份:
    2015
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Standard Grant
Solution-Based Fabrication of Coherent Nanocomposite Film Electrodes for Li-Ion Batteries
基于溶液的锂离子电池相干纳米复合薄膜电极的制造
  • 批准号:
    1030048
  • 财政年份:
    2010
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Standard Grant
Coherent Carbon Cryogel - Hydride Nanocomposite for Efficient H2 Storage
Coherent Carbon Cryogel - 用于高效储存氢气的氢化物纳米复合材料
  • 批准号:
    0605159
  • 财政年份:
    2006
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploration of electrode active materials for construction of hydride-ion driven devices
用于构建氢负离子驱动器件的电极活性材料的探索
  • 批准号:
    23KJ0933
  • 财政年份:
    2023
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using Mn-Co containing compounds formed through biological processes as precursors for development of electrode materials for energy storage applicat
利用生物过程形成的含锰钴化合物作为前体开发储能应用电极材料
  • 批准号:
    2875220
  • 财政年份:
    2023
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Studentship
I-Corps: Recovery of lithium and related materials from spent lithium batteries and lithium battery industry electrode waste
I-Corps:从废旧锂电池和锂电池行业电极废料中回收锂及相关材料
  • 批准号:
    2323629
  • 财政年份:
    2023
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Standard Grant
Stoichiometry, hierarchical arrangement and kinetics of electrode reactions at novel multi-components electrocatalytic materials
新型多组分电催化材料电极反应的化学计量、分级排列和动力学
  • 批准号:
    RGPIN-2019-05975
  • 财政年份:
    2022
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of Novel Electrode Materials for Reducing Environmental Impact in Molten Salt Electrolysis
减少熔盐电解环境影响的新型电极材料的研究
  • 批准号:
    22K04759
  • 财政年份:
    2022
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancing cation-disordered electrode materials for high performing and sustainable batteries
开发用于高性能和可持续电池的阳离子无序电极材料
  • 批准号:
    RGPAS-2020-00115
  • 财政年份:
    2022
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Electrode and Catalytic Materials for Solar Light Harvesting and Fuel Generation Systems
用于太阳能光收集和燃料生成系统的电极和催化材料
  • 批准号:
    RGPIN-2017-05143
  • 财政年份:
    2022
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Discovery Grants Program - Individual
Development of new positive electrode materials for rechargeable zinc-ion intercalation batteries to overcome energy capacity and stability limitations
开发用于可充电锌离子嵌入电池的新型正极材料,以克服能量容量和稳定性限制
  • 批准号:
    556905-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Alliance Grants
Kinetics, stoichiometry and product distributions of electrode reactions at novel electrocatalytic materials
新型电催化材料电极反应的动力学、化学计量和产物分布
  • 批准号:
    RGPIN-2017-04260
  • 财政年份:
    2022
  • 资助金额:
    $ 28.89万
  • 项目类别:
    Discovery Grants Program - Individual
Positive electrode materials for Li-ion batteries by an all-dry synthesis process
全干法合成工艺的锂离子电池正极材料
  • 批准号:
    572847-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.89万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了