Applied Mathematical Logic
应用数理逻辑
基本信息
- 批准号:0456653
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-15 至 2009-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator's research combines a number of diverse areas inmathematics: logic, set theory, algebra, topology, and analysis,as well as some automated reasoning techniques from computer science.In topology, the investigator focuses on properties of scattered spaces,compact homogeneous spaces, and Bohr topologies. Topology and analysisare integrated in this research, especially in the area of Bohr topologies,since the subject involves the standard cardinal functions of generaltopology (such as weight, character, etc.), but is studied via thetheory of group representations, which is part of harmonic analysis.Also, compact homogeneous spaces are often constructed with the aidof measures on the spaces. Logic and set theory are relevant becausestatements about topology and measure theory are frequently independentof the usual axioms of set theory; when a result is proved independent,the methods used are those of formal logic. For example, the notion ofthe Cantor-Bendixson sequence and scattered spaces is 100 years old,but there are still questions about the cardinals which can arisein the sequence of Cantor-Bendixson derivatives; part of theinvestigator's research studies how this sequence varies in differentmodels of set theory. In algebra, the investigator works on algebraicsystems such as quasigroups and loops. Automated reasoning toolsare very useful here. These algebraic systems are described byfairly simple axioms, and a computer search can often revealinteresting new consequences of these axioms. However, theinvestigator combines the computer use with classical argumentsinvolving combinatorics and group theory.The investigator's research studies a number of topics in puremathematics which arose naturally in an attempt to generalizeproperties of the physical universe. For example, topology arisesnaturally in an attempt to generalize the geometry of physical space.Measure theory is a natural extension of the notion of probability.The research also studies algebraic properties of loops, which naturallygeneralize the concept of groups, which arise in the study of symmetry.There is also a computational component to this research, especiallyinvolving loops. Frequently in this area, one wants to knowwhether one equation implies another. A proof of such an implicationinvolves symbolic manipulation which can be performed by a computer program.In recent years, the hardware and software have become powerful enoughto discover new implications and to solve problems which had beenintractable without computer assistance. The investigator'sresearch here is of interest both for the mathematics itself,and for the advancement of the computer tools used.
研究者的研究结合了许多不同的数学领域:逻辑,集合论,代数,拓扑学和分析,以及计算机科学中的一些自动推理技术。在拓扑学中,研究者专注于分散空间,紧致齐次空间和玻尔拓扑的性质。 本研究将拓扑学和分析学结合起来,特别是在玻尔拓扑学领域,因为本课题涉及到一般拓扑学的标准基数函数(如权、特征等),但它是通过调和分析的一部分群表示理论来研究的,紧齐性空间也常常借助于空间上的测度来构造。 逻辑和集合论是相关的,因为关于拓扑和测度论的陈述经常独立于集合论的通常公理;当一个结果被证明是独立的时,所使用的方法是形式逻辑的方法。 例如,Cantor-Bendixson序列和分散空间的概念已经有100年的历史了,但是关于Cantor-Bendixson导数序列中可能出现的基数仍然存在问题;研究者的研究部分研究了这个序列在集合论的不同模型中如何变化。 在代数中,研究者研究代数系统,如拟群和循环。 自动推理工具在这里非常有用。 这些代数系统是由相当简单的公理描述的,计算机搜索经常可以揭示这些公理的有趣的新结果。 然而,调查员结合了计算机的使用与经典的论点,涉及组合学和群论。调查员的研究研究了一些纯粹数学的主题,这些主题自然地出现在试图概括物理宇宙的性质。 例如,拓扑学很自然地试图概括物理空间的几何学;测度论是概率概念的自然延伸;该研究还研究了环的代数性质,它自然地概括了在对称性研究中出现的群的概念;该研究也有一个计算部分,特别是涉及环。 在这一领域,人们常常想知道一个方程是否意味着另一个方程。 这种蕴涵的证明涉及到可以由计算机程序执行的符号操作。近年来,硬件和软件已经变得足够强大,可以发现新的蕴涵,并解决没有计算机辅助就难以解决的问题。 调查员的研究在这里是感兴趣的数学本身,并为先进的计算机工具使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Kunen其他文献
Single axioms for groups
- DOI:
10.1007/bf00245293 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Kenneth Kunen - 通讯作者:
Kenneth Kunen
A Ramsey theorem in Boyer-Moore logic
- DOI:
10.1007/bf00881917 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Kenneth Kunen - 通讯作者:
Kenneth Kunen
Set Theory: An Introduction to Independence Proofs
集合论:独立性证明简介
- DOI:
- 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Kenneth Kunen - 通讯作者:
Kenneth Kunen
Forcing and Differentiable Functions
- DOI:
10.1007/s11083-011-9210-8 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:0.300
- 作者:
Kenneth Kunen - 通讯作者:
Kenneth Kunen
Limits in function spaces and compact groups
- DOI:
10.1016/j.topol.2003.08.036 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:
- 作者:
Joan E. Hart;Kenneth Kunen - 通讯作者:
Kenneth Kunen
Kenneth Kunen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Kunen', 18)}}的其他基金
Mathematical Sciences: Applied Mathematical Logic
数学科学:应用数理逻辑
- 批准号:
9100665 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Conference: Travel Awards to Attend the Twentieth Latin American Symposium on Mathematical Logic
会议:参加第二十届拉丁美洲数理逻辑研讨会的旅行奖
- 批准号:
2414907 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
WILDMOD: Model Theory of wild mathematical structures, new perspectives via geometries and positive logic.
WILDMOD:狂野数学结构的模型理论,通过几何和正逻辑的新视角。
- 批准号:
EP/Y027833/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Construction of Mathematical Logic System to Verify Quantum Communication Networks and Its Quantum Computational Implications
验证量子通信网络的数学逻辑系统的构建及其量子计算意义
- 批准号:
22KJ1483 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Nineteenth Latin American Symposium on Mathematical Logic
第十九届拉丁美洲数理逻辑研讨会
- 批准号:
2212620 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Fostering Virtual Learning of Data Science Foundations with Mathematical Logic for Rural High School Students
协作研究:促进农村高中生数据科学基础与数学逻辑的虚拟学习
- 批准号:
2201394 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Reconsideration of the applications of the mathematical logic in "French Thought".
数理逻辑在《法国思想》中应用的再思考
- 批准号:
22K00103 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Fostering Virtual Learning of Data Science Foundations with Mathematical Logic for Rural High School Students
协作研究:促进农村高中生数据科学基础与数学逻辑的虚拟学习
- 批准号:
2201393 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
The Eighteenth Latin American Symposium on Mathematical Logic
第十八届拉丁美洲数理逻辑研讨会
- 批准号:
1947015 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant