Extremal Problems Concerning Forbidden Subgraphs

有关禁止子图的极值问题

基本信息

  • 批准号:
    0457512
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The PI will study forbidden subgraph problems, namely the Turan andsaturation functions, as well as positional games. It is hoped that abetter understanding of some of the key topics, such as the Turan density,exactness results, stability, jumps, and non-principality phenomena willbe achieved. The PI will work on enlarging the list of forbiddenhypergraphs for which the complete solution has been obtained. Also, themore general setting of the above problems, wherein the restriction ofcontaining no forbidden subgraph is replaced by an arbitrary propertyexpressible in first order logic, will be considered. Another direction ofresearch is to study positional games, such as Breaker-Maker, coloring,and symmetry games. In particular, the PI will continue the previousinvestigation of the first order descriptive complexity of combinatorialstructures, in which the Ehrenfeucht game is an indispensable tool.The proposed topics of extremal combinatorics comprise many important anddifficult problems, some of which have withstood decades of attempts. Thisarea is rich in connections to other fields, such as the probabilisticmethod, linear algebra, codes, design theory, and finite fieldconstructions. Also, the investigator's work on positional games and firstorder properties, which play an important role in combinatorics, computerscience, and logic, may potentially lead to improvements in redundancy andrepresentation algorithms for combinatorial data.
PI将研究禁止子图问题,即图兰和饱和函数,以及位置游戏。希望能对一些关键问题,如Turan密度、精确性结果、稳定性、跳跃和非主性现象,有更好的理解。PI将致力于扩大已获得完整解决方案的禁止超图列表。此外,将考虑上述问题的更一般的设置,其中不包含禁止子图的限制被替换为在一阶逻辑中可表达的任意性质。另一个研究方向是研究位置游戏,如断路器制造商,着色和对称游戏。特别是,PI将继续先前对组合结构的一阶描述复杂性的研究,其中Escherichfeucht博弈是一个不可或缺的工具。极值组合学的拟议主题包括许多重要和困难的问题,其中一些已经经受了几十年的尝试。这一领域与其他领域有着丰富的联系,如概率方法、线性代数、代码、设计理论和有限域构造。此外,调查员的位置游戏和一阶属性,这在组合学,计算机科学和逻辑中发挥了重要作用的工作,可能会导致改进冗余和组合数据的表示算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleg Pikhurko其他文献

Forcing generalised quasirandom graphs efficiently
有效地强制广义拟随机图
  • DOI:
    10.1017/s0963548323000263
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrzej Grzesik;Daniel Král’;Oleg Pikhurko
  • 通讯作者:
    Oleg Pikhurko
The first order definability of graphs: Upper bounds for quantifier depth
  • DOI:
    10.1016/j.dam.2006.03.002
  • 发表时间:
    2006-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Oleg Pikhurko;Helmut Veith;Oleg Verbitsky
  • 通讯作者:
    Oleg Verbitsky
Size Ramsey Numbers of Stars Versus 3-chromatic Graphs
  • DOI:
    10.1007/s004930100004
  • 发表时间:
    2001-07-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Oleg Pikhurko
  • 通讯作者:
    Oleg Pikhurko
On the (6,4)-problem of Brown, Erdős, and Sós
关于 Brown、Erdős 和 Sós 的 (6,4) 问题
Constructions of Turán systems that are tight up to a multiplicative constant
到一个乘法常数为止是紧密的图兰系统的构造
  • DOI:
    10.1016/j.aim.2025.110148
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Oleg Pikhurko
  • 通讯作者:
    Oleg Pikhurko

Oleg Pikhurko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleg Pikhurko', 18)}}的其他基金

Extremal Combinatorics
极值组合学
  • 批准号:
    EP/K012045/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Turan Problem for Graphs and Hypergraphs
图和超图的图兰问题
  • 批准号:
    0758057
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

A Philosophical investigation concerning the attribution of responsibility on the basis of the analysis of the concept of causation: In the light of problems on causation by absence
基于因果关系概念分析的责任归属的哲学考察——以缺席因果问题为视角
  • 批准号:
    18K00008
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Various problems in arithmetic geometry concerning arithmetic fundamental groups and their interrelationships
算术几何中有关算术基本群及其相互关系的各种问题
  • 批准号:
    15H03609
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study Concerning the Association of Family relation with Child Behavioral Problems.
关于家庭关系与儿童行为问题关联的研究。
  • 批准号:
    15K21326
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Multi-layered analysis of modern problems concerning share repurchase
现代股份回购问题的多层次分析
  • 批准号:
    15K16968
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies of Comparative Thought on the Metaphysical Problems Concerning Life Emergence
生命发生形而上学问题的比较思想研究
  • 批准号:
    15K02086
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Explication of pilosophical problems concerning time using achievements of modern physics
用现代物理学成果解释有关时间的哲学问题
  • 批准号:
    26370021
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Miscellaneous problems concerning "intercultural care" and theoretical,practicing study about foreigner lawyer education
“跨文化关怀”的若干问题及外国人律师教育的理论、实践研究
  • 批准号:
    26502001
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems concerning the education and training of manufacturing engineers and maintenance technicians capable of working effectively at overseas manufacturing bases, and technology transfer
有关海外制造基地能够有效工作的制造工程师和维修技术人员的教育和培训以及技术转让的问题
  • 批准号:
    25380536
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of the problems concerning Gender Diversity in Managemnt of Medium-sized Manufacturing Firms
中型制造企业管理中性别多元化问题研究
  • 批准号:
    25380535
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic problems concerning responding demand of emergency medical needs
应急医疗需求响应的基本问题
  • 批准号:
    25670771
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了