Moduli of curves and abelian varieties

曲线模和阿贝尔簇

基本信息

  • 批准号:
    0500747
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

The investigator has done work related to several fundamental invariants of themoduli space of curves of genus g. In particular he has studied the nature of the moduli space M(g) as it changes from being a unirational variety (for small g) to a variety of general type. Recently the investigator has found a series a counterexamples to the Harris-Morrison Slope Conjecture on the cone of effective divisors on M(g). In other works, the investigator has used moduli of curves to prove the Minimal Resolution Conjecture for canonical curves and has studied geometric stratification of moduli spaces of spin curves. This project proposes a new technique of defining intrinsic coordinates on the moduli space of curves that would reduce many problems about linear series or vector bundles over M(g) to combinatorial questions having a toric geometry flavour. In particular, this approach is expected to provide a uniform bound (independent of g) on slopes of effective divisors on M(g), and thus prove a weak version of the Slope Conjecture. This would show that any modular form on the moduli space A(g) of g-dimensional abelian varieties which has sufficiently small slope, vanishes on M(g) which would give a novel solution to the Schottky problem of distinguishing Jacobians among all abelian varieties. In a different direction, the investigator proposes to introduce a new stratification of M(g) defined in terms of syzygies of certain special linear systems of curves. This geometric stratification can be thought of as amore subtle analogue of the classical stratification of M(g) given by gonalitywhere the analogue of hyperelliptic curves are sections of K3 surfaces. One application would be a construction of a birational model of the moduli space F(g) of polarized K3 surfaces of sectional genus g which could be used to describe the intersection theory of F(g). A different project (joint with S. Grushevsky) involves the study of the linear system of 2-theta functions on the Jacobian of a curve. Using a mixture of algebraic geometry and theta function theory, the investigator hopes to understand the stratification of this linear system given by multiplicities along the higher difference varieties of the curve and relate them to the projective geoemtery of secant varieties of canonical curves.The guiding problem in algebraic geometry is to classify algebraic varieties up to isomorphism. For varieties of dimension 1 this problem is approached by considering the moduli space M(g) of curves of genus g. This is the universal parameter space for curves of genus g and M(g) is an algebraic variety of dimension 3g-3. This space is of enormous interest to algebraic geometers and string theorists and the last decade has seen major progress in understanding the geometry of M(g) involving ideas from geometry, number theory and physics.
作者研究了亏格曲线的模空间的几个基本不变量,特别研究了模空间M(G)的性质,即模空间M(G)是一种单调变种(对于小g而言),它是一种一般类型。最近,研究者在M(G)上的有效因子锥上找到了Harris-Morison Slope猜想的一系列反例。在其他工作中,研究者用曲线的模证明了正则曲线的最小分辨猜想,并研究了自旋曲线的模空间的几何分层。这个项目提出了一种在曲线的模空间上定义内蕴坐标的新技术,它将把M(G)上的线性级数或向量丛的许多问题归结为具有环状几何性质的组合问题。特别地,这种方法有望在M(G)上的有效因子的斜率上提供一个一致的界(与g无关),从而证明Slope猜想的一个弱版本。这将表明,具有足够小斜率的g维阿贝尔簇的模空间A(G)上的任何模形式都在M(G)上消失,这将给出区分所有阿贝尔簇中的Jacobian的肖特基问题的一个新的解决方案。在不同的方向上,研究者建议引入M(G)的一种新的分层,该分层是根据某些特殊的线性曲线系统的合集定义的。这种几何分层可以看作是Gonality给出的M(G)的经典分层的更微妙的模拟,其中超椭圆曲线的模拟是K3曲面的部分。一个应用是构造分段亏格g的极化K3曲面的模空间F(G)的双调模型,该模型可用于描述F(G)的交集理论。另一个项目(与S.Grushevsky联合)涉及研究曲线雅可比上的2-theta函数的线性系统。利用代数几何和theta函数理论相结合的方法,研究人员希望了解这种线性系统的层次性,它是由曲线的高阶差值簇上的重数所给出的,并将它们与标准曲线的割簇的射影测距联系起来。代数几何中的指导问题是对代数簇进行分类,直到同构。对于1维变差,考虑亏格g的曲线的模空间M(G),这是g亏格曲线的泛参数空间,M(G)是维3G-3的代数族。这个空间引起了代数几何学家和弦理论家的极大兴趣,在过去的十年里,人们在理解M(G)的几何方面取得了重大进展,涉及到几何、数论和物理的思想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Keel其他文献

Intersection theory of projective linear spaces
  • DOI:
    10.1007/bf02568749
  • 发表时间:
    1990-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Sean Keel
  • 通讯作者:
    Sean Keel

Sean Keel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Keel', 18)}}的其他基金

Theta Functions and Log Calabi Yau Varieties
Theta 函数和 Log Calabi Yau 品种
  • 批准号:
    2055089
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Canonical Construction of Mirrors for Polarized Calabi-Yau Manifolds
偏振卡拉比-丘流形镜的规范结构
  • 批准号:
    1561632
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theta Functions for Polarized Calabi-Yau Varieties
偏振 Calabi-Yau 品种的 Theta 函数
  • 批准号:
    1262165
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Birational Geometry of Moduli Spaces
模空间的双有理几何
  • 批准号:
    0854747
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Minimal Models of Moduli Spaces
模空间的最小模型
  • 批准号:
    0354994
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Research in Birational Geometry
双有理几何研究
  • 批准号:
    9988874
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Groupoid Quotients, Rational Curves on Open Varieties, and Curves with Ample Normal Bundle
数学科学:群形商、开簇上的有理曲线以及具有充足正态丛集的曲线
  • 批准号:
    9531940
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8905665
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award

相似国自然基金

Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
  • 批准号:
    2302511
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Stratifications of the moduli space of abelian varieties and that of curves
阿贝尔簇的模空间的分层和曲线的模空间的分层
  • 批准号:
    17K05196
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic geometry of the moduli spaces of algebraic curves and abelian varieties, and its applications
代数曲线和阿贝尔簇模空间的算术几何及其应用
  • 批准号:
    17K05179
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on characterization of the fundamental function sigma in the theory of Abelian functions via heat equations and general addition formulae
通过热方程和一般加法公式表征阿贝尔函数理论中的基本函数 sigma
  • 批准号:
    16K05082
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Study of algebraic curves, K3 surfaces and Abelian varieties
代数曲线、K3曲面和阿贝尔簇的研究
  • 批准号:
    15K04815
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
  • 批准号:
    155635-2013
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了