Studies in Representation Theory

表示论研究

基本信息

  • 批准号:
    0500922
  • 负责人:
  • 金额:
    $ 45.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

AbstractSchmidThe proposal has two related themes: a new method for establishing the analytic continuation and functional equation of L-functions attached to automorphic representations, and a study of irreducible unitary representations of reductive Lie groups. Broadly speaking, functional equations have been proved either by the method of integral formulas or the Langlands-Shahidi method. These have complementary advantages and drawbacks, and seem to be approaching the limits of their applicability. In joint work with Steve Miller, I have begun to derive analytic properties of L-functions from an analysis of the corresponding automorphic distribution. In this approach, the Gamma factors arise from computations on arithmetic quotients of nilpotent groups, which are far more tractable than the analogous computations with Whittaker functions. We expect to complete the analysis of the exterior-square and symmetric square L-functions for GL(n,Z), possibly also for higher level. We shall then consider L-functions for other groups. Although there are many isolated results about irreducible unitary representations of reductive Lie groups, they do not yet suggest a general picture. Kari Vilonen and I shall apply Morihiko Saito's theory of mixed Hodge modules to the study of unitary representations. Saito's theory implies the existence of certain canonical filtrations on Harish-Chandra modules, which do not seem visible from any other point of view. We already have a concrete conjecture about the unitary dual of a reductive Lie group. We shall work on the proof of the conjecture and investigate its implications.Riemann's Zeta function encodes deep properties of prime numbers. Conjecturally automorphic L-functions do the same for primes in number fields. The behavior of prime numbers has fascinated mathematicians for centuries, and will likely continue to do so in the future. However, prime numbers now have practical, highly significant applications in cryptography. For this reason, L-functions have become important not only to analytic and algebraic number theorists, but also to cryptographers. Irreducible unitary representations of reductive groups constitute the "atoms" of Fourier analysis on such groups and their quotient spaces. They play a significant role in number theory, specifically the Langlands program. The mathematical physics literature abounds with examples of irreducible unitary representations. This aspect of mathematical physics would be clarified and unified by a systematic understanding of such representations.
SchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmidSchmid广义地说,函数方程可以用积分公式的方法或Langlands-Shahidi方法证明。这两种方法各有利弊,而且似乎正在接近其适用性的极限。在与史蒂夫米勒的合作中,我开始从相应的自守分布的分析中推导出L-函数的解析性质。在这种方法中,Gamma因子来自于幂零群的算术幂零元的计算,这比使用惠特克函数的类似计算要容易得多。我们期望完成GL(n,Z)的外平方和对称平方L-函数的分析,也可能是更高层次的分析。然后我们将考虑其他群的L-函数。虽然有许多关于约化李群的不可约酉表示的孤立结果,但它们还没有给出一个普遍的图景。Kari Vilonen和我将应用Morihiko Saito的混合霍奇模理论来研究酉表示。Saito的理论暗示了在Harish-Chandra模上存在某些正则滤子,这在其他任何观点看来都是不可见的。关于约化李群的酉对偶,我们已经有了一个具体的猜想。我们将致力于证明这个猜想并研究它的含义。黎曼的Zeta函数编码了素数的深层性质。猜想自守L-函数对数域中的素数也有同样的作用。素数的行为已经吸引了数学家几个世纪,并且在未来可能会继续这样做。然而,素数现在在密码学中有着实际的、非常重要的应用。由于这个原因,L-函数不仅对解析数论和代数数论很重要,而且对密码学家也很重要。约化群的不可约酉表示构成了此类群及其商空间上傅立叶分析的“原子”。它们在数论中起着重要的作用,特别是朗兰兹纲领。数学物理文献中有大量的不可约酉表示的例子。数学物理的这一方面将通过对这种表示的系统理解而得到澄清和统一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilfried Schmid其他文献

Pairings of automorphic distributions
  • DOI:
    10.1007/s00208-011-0685-9
  • 发表时间:
    2011-07-07
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Stephen D. Miller;Wilfried Schmid
  • 通讯作者:
    Wilfried Schmid

Wilfried Schmid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilfried Schmid', 18)}}的其他基金

Studies in Representation Theory
表示论研究
  • 批准号:
    1300185
  • 财政年份:
    2013
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Studies in Representation Theory
表示论研究
  • 批准号:
    1001405
  • 财政年份:
    2010
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Studies in Representation Theory
表示论研究
  • 批准号:
    0070714
  • 财政年份:
    2000
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Representation Theory
数学科学:表示论研究
  • 批准号:
    9501098
  • 财政年份:
    1995
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Representation Theory
数学科学:表示论研究
  • 批准号:
    9204511
  • 财政年份:
    1992
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies In Representation Theory
数学科学:表示论研究
  • 批准号:
    8701578
  • 财政年份:
    1987
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Representation Theory
数学科学:表示论研究
  • 批准号:
    8317436
  • 财政年份:
    1984
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Studies in Representation Theory
表示论研究
  • 批准号:
    7913190
  • 财政年份:
    1979
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Geometric Analysis
几何分析
  • 批准号:
    7103442
  • 财政年份:
    1972
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant

相似海外基金

Representation theory: studies of symmetry shadows
表示论:对称阴影的研究
  • 批准号:
    DE190101099
  • 财政年份:
    2019
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Discovery Early Career Researcher Award
Studies on the partition functions of quantum integrable models and representation theory of symmetric polynomials
量子可积模型的配分函数及对称多项式表示论研究
  • 批准号:
    15H06218
  • 财政年份:
    2015
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Studies in the analytic theory of polynomials and matrix analysis with applications to the majorana representation in quantum physics
多项式解析理论和矩阵分析及其在量子物理中马约拉纳表示的应用研究
  • 批准号:
    327291-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in the analytic theory of polynomials and matrix analysis with applications to the majorana representation in quantum physics
多项式解析理论和矩阵分析及其在量子物理中马约拉纳表示的应用研究
  • 批准号:
    327291-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in the analytic theory of polynomials and matrix analysis with applications to the majorana representation in quantum physics
多项式解析理论和矩阵分析及其在量子物理中马约拉纳表示的应用研究
  • 批准号:
    327291-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Discovery Grants Program - Individual
A new development of studies on stochastic process, statistical distributions and representation theory
随机过程、统计分布和表示论研究的新进展
  • 批准号:
    25610006
  • 财政年份:
    2013
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies in Representation Theory
表示论研究
  • 批准号:
    1300185
  • 财政年份:
    2013
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
  • 批准号:
    1123059
  • 财政年份:
    2012
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Studies in the analytic theory of polynomials and matrix analysis with applications to the majorana representation in quantum physics
多项式解析理论和矩阵分析及其在量子物理中马约拉纳表示的应用研究
  • 批准号:
    327291-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in the analytic theory of polynomials and matrix analysis with applications to the majorana representation in quantum physics
多项式解析理论和矩阵分析及其在量子物理中马约拉纳表示的应用研究
  • 批准号:
    327291-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了