Dynamics of Matter and Quantized Radiation

物质动力学和量子化辐射

基本信息

  • 批准号:
    0503432
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

AbstractGriesemerThe focus is on two projects. Both of them concern the effectof quantized low-energy (infrared) radiation on the dynamics ofatoms and molecules. The first project studies the behavior ofatoms and molecules that are initially in their ground state andsubject to an external electromagnetic field. Then, in a timeinterval of length T this external field is slowly changed in agiven and fixed manner; slowly meaning that T is very large on thetime scale of the atom or molecule. The goal is to understand why,in an experiment, the system would stay close to its instantaneousground state at all times. The main mathematical problem inproving this within non-relativistic quantum electrodynamics is toshow that the ground state eigenvector and its energy are smoothfunctions of the external field configuration, even though theground state energy is embedded in the continuous spectrum. Toanalyze this problem the renormalization group analysis of Bach,Froehlich, and Sigal is simplified and adjusted to the problem athand. The second project concerns the phenomenon of relaxation tothe ground state of excited atoms and molecules. Under theassumption of an infrared cutoff this problem has recently beencompletely analyzed by the PI and his collaborators. The goal nowis to remove the un-physical assumption of an IR cutoff and toshow that no infrared problem occurs, that is, that only finitelymany photons are emitted.This is a project devoted to the mathematical analysis ofdynamical aspects of light (photons) interacting with atoms andmolecules. It is motivated by fundamental mathematical andphysical problems, the physics problems stemming from every dayphenomena and from low energy laboratory experiments (neon lamp,quantum chemistry, laser light etc). More specifically, theproposed research contributes to a rigorous mathematicalunderstanding of basic physical phenomena, such as the existenceof ''adiabatic limits'' and the relaxation to the ground state ofexcited atoms and molecules. The existence of adiabatic limits isof fundamental importance for our understanding of chemistry,since much of theoretical chemistry assumes good accuracy of anapproximative theory, called Born-Oppenheimer approximation, whosejustification requires existence an adiabatic limit. Therelaxation to the ground state of an excited atom is an examplewhere dissipation of energy in an open quantum system can bederived from first principles. It is also one of the main effectsresponsible for the production of all visible light. This projectwill deepen our understanding of the physics of atoms andmolecules and produce new mathematical tools that will likely findapplications elsewhere.
重点放在两个项目上。两者都关注量子化的低能(红外)辐射对原子和分子动力学的影响。第一个项目研究最初处于基态并受外部电磁场影响的原子和分子的行为。然后,在长度为T的时间间隔内,该外场以给定的固定方式缓慢变化;慢意味着T在原子或分子的时间尺度上非常大。我们的目标是理解为什么在实验中,系统会一直保持在它的瞬时基态附近。在非相对论性量子电动力学中,改进这一点的主要数学问题是表明基态特征向量及其能量是外场构型的平滑函数,即使基态能量嵌入在连续谱中。为了分析这一问题,对Bach、Froehlich和signal的重整化群分析进行了简化和调整。第二个项目涉及激发态原子和分子弛豫到基态的现象。在红外截止的假设下,PI和他的合作者最近对这个问题进行了全面的分析。现在的目标是消除红外截止的非物理假设,并表明没有红外问题发生,也就是说,只有有限的光子被发射出来。这是一个致力于光(光子)与原子和分子相互作用的动力学方面的数学分析的项目。它的动力来自基本的数学和物理问题,来自日常现象和低能实验室实验(霓虹灯,量子化学,激光等)的物理问题。更具体地说,提出的研究有助于对基本物理现象的严格数学理解,例如“绝热极限”的存在以及受激原子和分子的基态弛豫。绝热极限的存在对于我们理解化学具有根本的重要性,因为许多理论化学都假定一种叫做玻恩-奥本海默近似的近似理论具有很高的准确性,而这种近似理论的正当性要求存在绝热极限。激发原子到基态的弛豫就是一个例子,其中开放量子系统中的能量耗散可以从第一性原理推导出来。它也是产生所有可见光的主要效应之一。这个项目将加深我们对原子和分子物理学的理解,并产生新的数学工具,这些工具可能会在其他地方得到应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcel Griesemer其他文献

On the Atomic Photoeffect in Non-relativistic QED
  • DOI:
    10.1007/s00220-010-1121-9
  • 发表时间:
    2010-09-02
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Marcel Griesemer;Heribert Zenk
  • 通讯作者:
    Heribert Zenk
Multipolarons in a Constant Magnetic Field
恒定磁场中的多极化子
  • DOI:
    10.1007/s00023-013-0266-4
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ioannis Anapolitanos;Marcel Griesemer
  • 通讯作者:
    Marcel Griesemer

Marcel Griesemer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcel Griesemer', 18)}}的其他基金

Quantum-Mechanical Matter Interacting with the Quantized Radiation Field
量子力学物质与量子化辐射场相互作用
  • 批准号:
    0100160
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:

相似海外基金

Root effects on soil organic matter: a double-edged sword
根系对土壤有机质的影响:一把双刃剑
  • 批准号:
    DP240101159
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
  • 批准号:
    DP240101590
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Investigating Dark Matter in Semi-Visible Jets at CERN
欧洲核子研究中心研究半可见喷流中的暗物质
  • 批准号:
    2907986
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Functional implications of focal white matter lesions on neuronal circuits
局灶性白质病变对神经元回路的功能影响
  • 批准号:
    MR/Y014537/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Partial Support of the Condensed Matter and Materials Research Committee
凝聚态与材料研究委员会的部分支持
  • 批准号:
    2337353
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307251
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了