Dynamical aspects in nonautonomous and random differential equations and applications

非自治和随机微分方程的动力学方面及其应用

基本信息

  • 批准号:
    0504166
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-15 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

This project is to investigate the dynamics of nonautonomous and random differential equations arising from a variety of applied problems. In particular, the investigator will explore (1) wave front dynamics in diffusive random and inhomogeneous media arising in phase transitions, nerve pulse propagation, population genetics, and cellular neural networks; (2) spectra and Lyapunov exponents for nonautonomous and random linear parabolic equations, with applications to uniform persistence and coexistence in competitive systems; and (3) global dynamics in stochastically forced oscillators, including Josephson junctions in superconducting circuits. The project involves extension of classical notions in differential equations and dynamical systems as well as the development and implementation of new tools and techniques for the study of the problems in the project. The results of the project will enhance the understanding of the dynamics of the systems under investigation, will provide theoretical and methodological foundations for the further study of these systems and related ones, and will bring closer together three separate, but related, branches of mathematics: differential equations, topological dynamical systems, and metric dynamical systems, enriching each of them.Realistic physical and biological systems are influenced by variations in the external environment, and are often situated in anisotropic or inhomogeneous media. For this reason, the study of such systems via models involving nonautonomous or random or stochastic differential equations has been gaining more and more attention. Due to a lack of general methodology and difficulties in generalizing classical concepts and notions, there is still little understanding of many of these equations. The investigator will extend relevant classical concepts and notions and develop new tools and techniques to study the dynamics of these equations. The results of the project will provide deep insight into the effects of random external influences and inhomogeneity of media on the dynamics in models of physical and biological problems including phase transitions, nerve pulse propagation, population dynamics, cellular neural networks, pattern formation, and superconducting circuits. The project will provide graduate students training in the area and will create opportunities for students to interact with scientists from other disciplines.
这个项目是研究由各种应用问题引起的非自治和随机微分方程的动力学。具体地说,研究人员将探索(1)在相变、神经脉冲传播、种群遗传学和细胞神经网络中出现的扩散随机和非均匀介质中的波前动力学;(2)非自治和随机线性抛物型方程的谱和Lyapunov指数,以及在竞争系统中的一致持久性和共存的应用;以及(3)随机强迫振子中的全局动力学,包括超导电路中的约瑟夫森结。该项目包括推广微分方程和动力系统中的经典概念,以及为研究该项目中的问题开发和实施新的工具和技术。该项目的结果将加深对所研究系统动力学的了解,将为进一步研究这些系统及其相关系统提供理论和方法论基础,并将使三个相互独立但相互关联的数学分支更加紧密地联系在一起:微分方程、拓扑动力系统和度规动力系统,丰富了它们各自的内容。现实的物理和生物系统受到外部环境变化的影响,通常位于各向异性或非均匀介质中。因此,通过涉及非自治或随机或随机微分方程的模型来研究这类系统得到了越来越多的关注。由于缺乏一般的方法论,以及推广经典概念和概念的困难,人们对这些方程中的许多仍然知之甚少。研究人员将扩展相关的经典概念和概念,并开发新的工具和技术来研究这些方程的动力学。该项目的结果将深入了解随机外部影响和介质的不均匀对物理和生物问题模型中动力学的影响,包括相变、神经脉冲传播、种群动力学、细胞神经网络、图案形成和超导电路。该项目将为该领域的研究生提供培训,并将为学生创造与其他学科的科学家互动的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenxian Shen其他文献

Well-posedness of Keller–Segel systems on compact metric graphs
  • DOI:
    10.1007/s00028-024-01033-x
  • 发表时间:
    2024-12-15
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Hewan Shemtaga;Wenxian Shen;Selim Sukhtaiev
  • 通讯作者:
    Selim Sukhtaiev
Global existence of classical solutions of chemotaxis systems with logistic source and consumption or linear signal production on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msupmrowmi mathvariant="double-struck"R/mi/mrowmrowmin/mi/mrow/msup/math
具有逻辑斯谛源以及消耗或线性信号产生的趋化系统经典解在\(R\)上的全局存在性
  • DOI:
    10.1016/j.jde.2024.08.064
  • 发表时间:
    2024-12-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Zulaihat Hassan;Wenxian Shen;Yuming Paul Zhang
  • 通讯作者:
    Yuming Paul Zhang
Asymptotic behavior of the generalized principal eigenvalues of nonlocal dispersal operators and applications
非局部扩散算子广义主特征值的渐近行为及其应用
  • DOI:
    10.1016/j.jde.2024.08.066
  • 发表时间:
    2024-12-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Wenxian Shen;Jian-Wen Sun
  • 通讯作者:
    Jian-Wen Sun
Propagation phenomena for time-space periodic cooperative systems with advection in multidimensional habitats
多维生境中平流时空周期协同系统的传播现象
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li-Ju Du;Wan-Tong Li;Wenxian Shen
  • 通讯作者:
    Wenxian Shen
Asymptotic dynamics of non-autonomous fractional reaction-diffusion equations on bounded domains
有界域上非自主分数式反应扩散方程的渐近动力学

Wenxian Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenxian Shen', 18)}}的其他基金

Dynamical System Approach in Partial Differential Equations
偏微分方程中的动力系统方法
  • 批准号:
    1645673
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamical aspects in nonautonomous and random differential equations and applications
非自治和随机微分方程的动力学方面及其应用
  • 批准号:
    0907752
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-Polish Cooperative Research: Lyapunov Exponents and Spectrum for Random and Nonautonomous Parabolic Equations
美波合作研究:随机和非自治抛物型方程的李亚普诺夫指数和谱
  • 批准号:
    0341754
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamics in Time Dependent Continuous and Discrete Equations and Applications
瞬态连续和离散方程的动力学及其应用
  • 批准号:
    0103381
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Almost Periodic Differential Equations and Lattice Dynamical Systems
准周期微分方程和格子动力系统
  • 批准号:
    9704245
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics in Almost Periodic Parabolic Equations and Coupled Map Lattices
数学科学:近周期抛物线方程和耦合映射格子的动力学
  • 批准号:
    9402945
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
  • 批准号:
    2903280
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
  • 批准号:
    23K01192
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
  • 批准号:
    23K00265
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological aspects of quantum scars
量子疤痕的拓扑方面
  • 批准号:
    2892181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
  • 批准号:
    2332366
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Aspects of Polish group dynamics
波兰团体动态的各个方面
  • 批准号:
    2246873
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
  • 批准号:
    2315822
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了