Numerical computation and qualitative properties of nonlinear Partial Differential Equations
非线性偏微分方程的数值计算和定性性质
基本信息
- 批准号:0504720
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award Abstract 0504720, J Szeftel, Princeton UniversityTitle: Numerical computation and qualitative properties of nonlinear Partial Differential Equations The principal investigator proposes to work on three problems in applied mathematics. The first problem is related to the design of absorbing boundary conditions for nonlinear partial differential equations. The main goal is to obtain absorbing boundary conditions for systems such as those of fluid dynamics. This work will contain numerical computations as well as advanced microlocal analysis. The second problem deals with the optimization of the transmission conditions in domain decomposition methods. The principal investigator intends to use the absorbing boundary conditions designed for nonlinear partial differential equations to optimize the transmission conditions. This project will contain in particular numerical computations. The third area of work deals with long-time existence for nonlinear partial differential equations on compact manifolds. The aim is to improve the estimate on the time of existence given by the local existence theory for solutions of nonlinear partial differential equations. The mathematical techniques will involve advanced tools in analysis. This project focuses on three problems, two problems being related to numerical analysis and one to qualitative properties of nonlinear partial differential equations. The suggested works involve very interesting mathematical questions and at the same time are important for applications. The first and the second problem tackle with the numerical computation of huge systems and have therefore applications in numerous areas such as environmental sciences (oceanography and meteorology) as well as medicine (simulation of blood flows in human vascular system). While it is too soon to appraise the wide societal impact of the third problem, the last decades have seen stunning applications in many fields (e. g. environmental sciences and dynamic of populations to name just a few) of the study of qualitative properties of partial differential equations. These three proposed problems will solidify important connections between area of modern mathematical research such as numerical analysis, nonlinear partial differential equations and advanced microlocal analysis. The principal investigator will disseminate results of the project among both applied and pure mathematicians.
奖项摘要 0504720,J Szeftel,普林斯顿大学 标题:非线性偏微分方程的数值计算和定性性质 首席研究员提议研究应用数学中的三个问题。第一个问题与非线性偏微分方程吸收边界条件的设计有关。主要目标是获得系统(例如流体动力学系统)的吸收边界条件。这项工作将包含数值计算以及高级微局部分析。第二个问题涉及域分解方法中传输条件的优化。主要研究者打算利用为非线性偏微分方程设计的吸收边界条件来优化传输条件。该项目将特别包含数值计算。第三个工作领域涉及紧流形上非线性偏微分方程的长期存在性。目的是改进非线性偏微分方程解的局部存在理论给出的存在时间估计。数学技术将涉及先进的分析工具。该项目重点研究三个问题,其中两个问题与数值分析有关,一个问题与非线性偏微分方程的定性性质有关。建议的作品涉及非常有趣的数学问题,同时对于应用也很重要。第一和第二个问题涉及大型系统的数值计算,因此在环境科学(海洋学和气象学)以及医学(人体血管系统中的血流模拟)等众多领域都有应用。虽然现在评估第三个问题的广泛社会影响还为时过早,但过去几十年来,偏微分方程的定性性质研究在许多领域(例如环境科学和人口动态等)都取得了令人惊叹的应用。这三个提出的问题将巩固现代数学研究领域(例如数值分析、非线性偏微分方程和高级微局域分析)之间的重要联系。首席研究员将向应用数学家和纯数学家传播该项目的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremie Szeftel其他文献
Réflexion des Singularités pour L'équation de Schrödinger
薛定谔方程的奇点反射
- DOI:
10.1081/pde-120037330 - 发表时间:
2004 - 期刊:
- 影响因子:1.9
- 作者:
Jeremie Szeftel - 通讯作者:
Jeremie Szeftel
The resolution of the bounded L 2 curvature conjecture in general relativity
- DOI:
10.1007/s00574-016-0161-y - 发表时间:
2016-06-22 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Jeremie Szeftel - 通讯作者:
Jeremie Szeftel
Jeremie Szeftel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
面向MANET的密钥管理关键技术研究
- 批准号:61173188
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:面上项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于安全多方计算的抗强制电子选举协议研究
- 批准号:60773114
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
- 批准号:
2400056 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
- 批准号:
2339193 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
- 批准号:
DE240100846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




