New Aspects of Soliton Theory

孤子理论的新方面

基本信息

项目摘要

Abstract, DMS 0505566, D Kaup, University of Central FloridaTitle: New Aspects of Soliton TheoryThe research supported by this award will address aspects of nonlinear waves and soliton theory which have not be fully understood before. In particular, it is to develop new analytical paradigms for solving nonlinear problems. This research will develop an Inverse Scattering Transform (IST) for general initial value problems of the Camassa-Holm and related equations. Current techniques only allow one to treat a limited class of initial value problems. For the Camassa-Holm Equation, which is an important limit of a class of hydrodynamical problems, only positive potentials can be treated. However, the prediction of the evolution involving negative potentials are also quite important. Such potentials are known to model wave-breaking. This research will expand the power of the IST method to those cases where the potential could be negative and/or positive in any region. The techniques developed by this research are important because they then could be applied to other important and related, but more complex systems. One related and important nonlinear optical system is called "Degenerate Two-Photon Propagation", which is a very fast nonlinear interaction, by which one can generate intense second harmonic radiation from a laser beam. The latter system has potential applications to future nonlinear optical systems, including optical logic circuits and switches. This award will also support nonlinear wave research for finding methods and means for modeling nonintegrable physical systems which do contain solitary waves. This award is to support research to extend our mathematical methods into physical regimes which have remained unsolvable. It will center on a solution method for an equation which describes how the surface of shallow water behaves when disturbed. The reason for the choice of this equation is not necessarily just for increasing our understanding of surface water waves, although that will occur. Rather, the choice is made because this equation is relatively simple in its structure, and furthermore, is at the central core of a class of important physical systems. Developing methods for solving this core system will allow one to immediately apply the same techniques to these other systems. One of these systems, mentioned above, is from optical physics. Another such system is also found in optical physics, but also occurs in other areas of physics as well. It is an interaction whereby a laser beam, propagating in a medium or a plasma, can go unstable, or could stabilize. As a product of this research, we would then have methods for predicting when and how the above mentioned interaction would produce a stability or an instability. The results from these proposed research topics will have a broader impact than simply the mathematics that are proposed. They will expand the physical systems that can be studied mathematically, will provide new areas for mathematical research, and will further the understanding of the physics behind the physical systems so studied.
题目:孤子理论的新方面本奖项支持的研究将解决以前尚未完全理解的非线性波和孤子理论方面的问题。特别是,它是发展新的分析范式,以解决非线性问题。本研究将发展Camassa-Holm及相关方程的一般初值问题的逆散射变换(IST)。目前的技术只允许处理有限类的初值问题。Camassa-Holm方程是一类流体动力学问题的重要极限,它只能处理正势。然而,预测涉及负电位的演化也很重要。已知这种电位可以模拟破波。这项研究将把IST方法的力量扩展到那些在任何地区可能是负的和/或正的潜在情况。这项研究开发的技术很重要,因为它们可以应用于其他重要的和相关的,但更复杂的系统。一个相关且重要的非线性光学系统被称为“简并双光子传播”,它是一种非常快速的非线性相互作用,通过它可以从激光束产生强烈的二次谐波辐射。后一种系统在未来的非线性光学系统中有潜在的应用,包括光逻辑电路和开关。该奖项还将支持非线性波研究,以寻找方法和手段来模拟包含孤立波的不可积物理系统。这个奖项是为了支持将我们的数学方法扩展到仍然无法解决的物理制度的研究。它将集中在一个方程的解方法,该方程描述了浅水表面在受到干扰时的行为。选择这个方程的原因不一定只是为了增加我们对表面水波的理解,尽管这将会发生。相反,之所以做出这样的选择,是因为这个方程的结构相对简单,而且它是一类重要物理系统的核心。开发解决这个核心系统的方法将允许人们立即将相同的技术应用于这些其他系统。上面提到的其中一个系统来自光学物理学。另一个这样的系统也被发现在光学物理,但也发生在其他领域的物理以及。它是一种相互作用,在介质或等离子体中传播的激光束可以变得不稳定,也可以变得稳定。作为这项研究的成果,我们将有方法来预测上述相互作用何时以及如何产生稳定或不稳定。这些被提议的研究课题的结果将比被提议的数学有更广泛的影响。它们将扩展可以用数学方法研究的物理系统,将为数学研究提供新的领域,并将进一步理解所研究的物理系统背后的物理学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Kaup其他文献

David Kaup的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Kaup', 18)}}的其他基金

DHB - Modeling in Social Dynamics: A Differential Approach
DHB - 社会动态建模:差异化方法
  • 批准号:
    0527545
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Applications of Soliton Theory in Nonlinear Optics
孤子理论在非线性光学中的新应用
  • 批准号:
    0129714
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-Germany Cooperative Research in Nonlinear Optics
美德非线性光学合作研究
  • 批准号:
    9200672
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
US-USSR Cooperative Sciences: Third Potsdam and Fifth Kiev Workshop on Nonlinear Processes in Physics (Clarkson Univ., August 1-11, 1991)
美苏合作科学:第三次波茨坦和第五次基辅物理学非线性过程研讨会(克拉克森大学,1991 年 8 月 1-11 日)
  • 批准号:
    9016786
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Physics Using a New Exact Technique
使用新的精确技术的非线性物理
  • 批准号:
    7408246
  • 财政年份:
    1974
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
  • 批准号:
    2903280
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
  • 批准号:
    23K01192
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
  • 批准号:
    23K00265
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological aspects of quantum scars
量子疤痕的拓扑方面
  • 批准号:
    2892181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
  • 批准号:
    2332366
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Aspects of Polish group dynamics
波兰团体动态的各个方面
  • 批准号:
    2246873
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
  • 批准号:
    2315822
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了