Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
基本信息
- 批准号:0505622
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed project consists of three parts. The first part deals with asymptotic formulas for Lyapunov exponents of differential and difference equations with small random perturbations, and estimates of the Lyapunov exponents of stochastic differential equations. The second part is devoted to the spectral problems for certain random and stochastic differential equations. The third part deals with existence and uniqueness of self-similar Dirichlet forms, diffusions, and random walks.The broader impacts of the project include applications to the study of the long term behavior of natural and statistical processes occurring in random media. Signal propagation in channels with random obstacles, electro-magnetic waves in plasma, Rossby waves in oceanography, models of financial markets are just a few of many examples of such processes. Also, the project contributes to the study of processes in self-similar objects (fractals), which have many applications in physics, engineering and biological sciences. The project includes various educational and REU activities.
拟议项目包括三个部分。第一部分讨论了具有小随机扰动的微分方程和差分方程的李雅普诺夫指数的渐近公式,以及随机微分方程的李雅普诺夫指数的估计。第二部分研究一类随机微分方程的谱问题。 第三部分涉及自相似Dirichlet形式,扩散和随机游动的存在性和唯一性。该项目的更广泛的影响包括应用于研究随机介质中发生的自然和统计过程的长期行为。随机障碍物通道中的信号传播、等离子体中的电磁波、海洋学中的罗斯贝波、金融市场模型等都只是这类过程的几个例子。 此外,该项目有助于研究自相似物体(分形)的过程,这些过程在物理学,工程学和生物科学中有许多应用。 该项目包括各种教育和REU活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Teplyaev其他文献
Convergence, optimization and stability of singular eigenmaps
奇异特征图的收敛、优化和稳定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bernard Akwei;Bobita Atkins;Rachel Bailey;Ashka Dalal;Natalie Dinin;Jonathan Kerby;Tess McGuinness;Tonya Patricks;Luke Rogers;Genevieve Romanelli;Yiheng Su;Alexander Teplyaev - 通讯作者:
Alexander Teplyaev
On the existence of optimal shapes in architecture
- DOI:
10.1016/j.apm.2021.01.041 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Michael Hinz;Frédéric Magoulès;Anna Rozanova-Pierrat;Marina Rynkovskaya;Alexander Teplyaev - 通讯作者:
Alexander Teplyaev
Alexander Teplyaev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Teplyaev', 18)}}的其他基金
Conference: Analysis on fractals and networks with applications, at Luminy
会议:分形和网络分析及其应用,在 Luminy 举行
- 批准号:
2334026 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Random, Stochastic, and Self-Similar Equations
随机、随机和自相似方程
- 批准号:
1613025 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
- 批准号:
1106982 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Random, Stochastic, and Self-similar Equations
随机、随机和自相似方程
- 批准号:
0806103 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards an integrated, self-learning stochastic mining complex framework and new digital technologies for the sustainable development of mineral resources
为矿产资源的可持续发展建立一个集成的、自学习的随机采矿复杂框架和新的数字技术
- 批准号:
RGPIN-2021-02777 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
- 批准号:
547242-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
- 批准号:
547242-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
CRCNS US-German Research Proposal: Stochastic Axon Systems: From Spatial Dynamics to Self-Organization
CRCNS 美德研究提案:随机轴突系统:从空间动力学到自组织
- 批准号:
2112862 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
- 批准号:
500414-2016 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Rui: Active Noise in the Dynamics of Self-Propelled Particles – Stochastic Modeling and Experiments
Rui:自推进粒子动力学中的主动噪声 — 随机建模和实验
- 批准号:
2010018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
- 批准号:
547242-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
- 批准号:
500414-2016 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
- 批准号:
500414-2016 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Understanding of cellular ligand discrimination as a stochastic information processing system and its application for the control of immunological self/non-self discrimination
作为随机信息处理系统的细胞配体辨别的理解及其在免疫学自我/非自我辨别控制中的应用
- 批准号:
18K18147 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists