Mathematical Problems in Geophysical Dynamics

地球物理动力学中的数学问题

基本信息

  • 批准号:
    0505974
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

Geophysical flows involve a broad spectrum of interacting spatial and time scales, which makes them inaccessible to the most powerful and state-of-the-art computers. The grand challenge in understanding geophysical flows, and thus climate prediction, is that the mathematical equations governing the ocean and atmosphere dynamics are too difficult to study analytically, and still prohibitively expensive computationally. Development of computational and theoretical tools to further understanding of the climate system and its predictability is the major focus of this project. The first aspect of this project is to derive and justify rigorously simplified models of the atmosphere and the ocean, and to prove existence, uniqueness, and continuous dependence on the initial data for the inviscid primitive equations and the Boussinesq hydrostatic approximation under fast rotation, and two-layer frontal geostrophic models including planetary sphericity and variable topography. The second aspect is to study analytically the nonlinear theory of geostrophic adjustment for a rotating shallow-water model and the two-layer continuously stratified primitive equations, with the goal of answering the fundamental question of the possible splitting of an arbitrary atmospheric or oceanic motion into slow and fast components in such a way that the slow component will not be influenced by the fast one for long times. The approach of the proposal involves a combination of asymptotic analysis, numerical computation, and theoretical mathematical analysis. The project involves development of novel and sophisticated mathematical techniques, which will enhance our understanding of the complex system underlying the Earth's climate.
地球物理流动涉及广泛的相互作用的空间和时间尺度,这使得它们无法进入最强大和最先进的计算机。 理解地球物理流动以及气候预测的巨大挑战在于,控制海洋和大气动力学的数学方程太难分析研究,而且计算成本仍然高得令人望而却步。 该项目的主要重点是开发计算和理论工具,以进一步了解气候系统及其可预测性。 本项目的第一个方面是推导和证明严格简化的大气和海洋模式,并证明存在性,唯一性和连续依赖于初始数据的无粘原始方程和快速旋转下的Boussinesq流体静力近似,以及两层锋面地转模式,包括行星球度和可变地形。 第二方面是对旋转浅水模式和两层连续分层原始方程组的地转调整的非线性理论进行解析研究,目的是回答任意大气或海洋运动可能分裂成慢分量和快分量,使慢分量长时间不受快分量影响的基本问题。 该建议的方法包括渐近分析,数值计算和理论数学分析的组合。 该项目涉及开发新颖和复杂的数学技术,这将提高我们对地球气候背后复杂系统的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammed Ziane其他文献

Global existence for the stochastic Navier–Stokes equations with small $$L^{p}$$  data
Anticorrosive properties of small Mg and ZnMg clusters investigated by structural and electronic indicators
  • DOI:
    10.1007/s11051-025-06251-z
  • 发表时间:
    2025-02-21
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Yamina Cheballah;Mohammed Ziane;Karima Cheballah
  • 通讯作者:
    Karima Cheballah
An Anisotropic Partial Regularity Criterion for the Navier–Stokes Equations
  • DOI:
    10.1007/s00021-016-0278-1
  • 发表时间:
    2016-07-25
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Igor Kukavica;Walter Rusin;Mohammed Ziane
  • 通讯作者:
    Mohammed Ziane

Mohammed Ziane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohammed Ziane', 18)}}的其他基金

Some Mathematical Problems in Fluid Dynamics
流体动力学中的一些数学问题
  • 批准号:
    1109562
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Studies of Certain Geophysical Models
合作研究:某些地球物理模型的数学研究
  • 批准号:
    0204863
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
  • 批准号:
    RGPIN-2021-03285
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
  • 批准号:
    RGPIN-2021-03285
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
  • 批准号:
    DGECR-2021-00162
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Stability issues in some biomedical, financial, and geophysical inverse problems
一些生物医学、金融和地球物理反问题中的稳定性问题
  • 批准号:
    2008154
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical analysis of anisotropy and singular limit problems in the equations of geophysical fluid dynamics
地球物理流体动力学方程各向异性和奇异极限问题的数学分析
  • 批准号:
    19K03584
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coupled Physics Inverse Problems in Medical and Geophysical Imaging
医学和地球物理成像中的耦合物理反问题
  • 批准号:
    1715178
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Problems of Geophysical Fluid Mechanics: Uncertainties, Modeling, Theory, and Computing
地球物理流体力学的数学问题:不确定性、建模、理论和计算
  • 批准号:
    1510249
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Combining different types of data for geophysical inverse problems: Theory and applications
结合不同类型的数据解决地球物理反演问题:理论与应用
  • 批准号:
    25400449
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems of Geophysical Fluid Mechanics: Modeling, Theory and Computing
地球物理流体力学问题:建模、理论和计算
  • 批准号:
    1206438
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Numerical investigation of dictionary-based regularization for inverse problems and approximation problems on spheres and balls - with applications to seismic tomography and high-dimensional geophysical modelling
基于字典的正则化球体反演问题和近似问题的数值研究 - 及其在地震层析成像和高维地球物理建模中的应用
  • 批准号:
    226407518
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了