Universal Discrete Denoising
通用离散去噪
基本信息
- 批准号:0512140
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-03-01 至 2008-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an integrated research program on a new area with a rich array of applications: the problem of recovering a signal from its noise-corrupted version. The recovery can assume two major modes depending on the application: noncausal, i.e. it starts once the entire signal is available; and causal, i.e. decisions must be made immediately after each symbol is received. Our focus is on the theory and practice of denoising for the case where the alphabet of the noiseless, as well as that of the noise-corrupted signal, are finite. The problem arises in a variety of situations ranging from typing and/or spelling correction to hidden Markov process state estimation; from DNA sequence analysis and processing to enhancement of facsimile and other binary images; from blind equalization problems to joint source-channel decoding when a discrete source is sent unencoded through a discrete noisy channel. Certain instances of the discrete denoising problem have been studied, particularly in the context of state estimation for hidden Markov processes, assuming that the signal statistics are known. However, the literature on the universal setting, where there is uncertainty regarding the distribution of the underlying noiseless signal and/or regarding the noise-corrupting mechanism, has been sparse until this research. The compression-based approach to universal discrete denoising that preceded our research gave rise to schemes that were not implementable with reasonable complexity, and were considerably suboptimal relative to the case where the statistics are known.This research develops universal algorithms for discrete denoising without the need to know the statistical characterization of the noiseless signal. Promising results are obtained for the case of an unknown discrete source corrupted by various types of discrete channels. We show that it is possible to achieve universally the same asymptotic performance under any given distortion criterion as an algorithm that knows, and is specifically tailored for, the input statistics. Furthermore, we accomplish this with computational complexity that grows linearly with the size of the data.
这是一个具有丰富应用的新领域的综合研究计划:从被噪声破坏的版本中恢复信号的问题。根据应用,恢复可以采用两种主要模式:非因果模式,即一旦整个信号可用就开始;以及因果模式,即必须在接收到每个符号之后立即作出决定。我们的重点是去噪的理论和实践,在这种情况下,无声者的字母表以及被噪声污染的信号的字母表是有限的。该问题出现在各种情况中,从打字和/或拼写纠正到隐马尔可夫过程状态估计;从DNA序列分析和处理到传真和其他二进制图像的增强;从盲均衡问题到当离散信源通过离散噪声信道发送时的联合信源-信道解码。已经研究了离散去噪问题的某些实例,特别是在假设信号统计已知的情况下,对于隐马尔可夫过程的状态估计。然而,在这项研究之前,关于普遍背景的文献一直很稀少,在普遍背景下,关于潜在的无噪声信号的分布和/或关于噪声破坏机制的不确定性。在我们的研究之前,基于压缩的通用离散去噪方法产生了一些方案,这些方案不能以合理的复杂性实现,并且相对于已知统计数据的情况而言是相当次优的。本研究开发了通用的离散去噪算法,而不需要知道无噪声信号的统计特性。对于未知离散源被各种类型的离散信道破坏的情况,获得了有希望的结果。我们证明了在任何给定的失真准则下,作为一种知道并专门为输入统计量定制的算法,在任何给定的失真准则下都可能获得普遍相同的渐近性能。此外,我们通过随着数据大小线性增长的计算复杂性来实现这一点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsachy Weissman其他文献
Communication-Efficient Federated Learning through Importance Sampling
通过重要性采样实现高效沟通的联邦学习
- DOI:
10.48550/arxiv.2306.12625 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Berivan Isik;Francesco Pase;Deniz Gündüz;Oluwasanmi Koyejo;Tsachy Weissman;Michele Zorzi - 通讯作者:
Michele Zorzi
Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs
彩票改编:减轻法学硕士的破坏性干扰
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ashwinee Panda;Berivan Isik;Xiangyu Qi;Sanmi Koyejo;Tsachy Weissman;Prateek Mittal - 通讯作者:
Prateek Mittal
Tsachy Weissman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsachy Weissman', 18)}}的其他基金
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
- 批准号:
2106467 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Inference of Information Measures on Large Alphabets: Fundamental Limits, Fast Algorithms, and Applications
CIF:小型:协作研究:大字母表上信息测量的推断:基本限制、快速算法和应用
- 批准号:
1528159 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CIF:Small:Collaborative Research: Compressed databases for similarity queries: fundamental limits and algorithms
CIF:Small:协作研究:用于相似性查询的压缩数据库:基本限制和算法
- 批准号:
1321174 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Action in Information Processing
EAGER:信息处理中的行动
- 批准号:
1049413 - 财政年份:2010
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Feedback in Two-Way Communication Networks
协作研究:反馈在双向通信网络中的作用
- 批准号:
0729119 - 财政年份:2007
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CAREER: Toward a Unified Approach to Universality in Information Processing
职业:走向信息处理通用性的统一方法
- 批准号:
0546535 - 财政年份:2006
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Fellowship
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
- 批准号:
24K20238 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:
2400147 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant