Geometric Algorithms for Layered Manufacturing, with Applications

分层制造的几何算法及其应用

基本信息

  • 批准号:
    0514950
  • 负责人:
  • 金额:
    $ 19.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-15 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

Advances in computer-aided design and manufacturing (CAD/CAM) now make it possible to create physical prototypes of complex three-dimensional objects directly from their digital representations, using a "3D printer". The basis for this is a process called Layered Manufacturing (LM), which slices the digital model into layers and prints these layers successively, each atop the previous one. An emerging application of LM is Computer-Aided Tissue Engineering (CATE), whose goal is to restore and improve human health through the creation of artificial organs. LM is used in CATE to construct biodegradable scaffold structures and to seed them with cells that then grow to form the desired organs.This research will address several broad classes of algorithmic problems in LM, including geometric optimization, path planning, decomposition, and packing, with the added goal of leveraging the solutions to meet the needs of scaffold construction in CATE. The research will also involve an experimental component, which includes implementation and testing of algorithms and verification of results via physical prototyping. The intellectual merit of the research is that it will provide a rigorous algorithmic framework within which a number of challenging problems in LM, including scaffold construction, can be addressed, thereby leading to significant design and performance improvements. Simultaneously, these applications will provide interesting new problems that will stimulate further research in geometric algorithms. The broader impacts of the research are that it will foster further interaction between computer science and CAD/CAM and CATE through the involvement of undergraduate and graduate students from these areas in the research, the integration of new topics into the algorithm design curriculum, and collaboration with industry.
计算机辅助设计和制造(CAD/CAM)的进步现在可以使用“3D打印机”直接从数字表示中创建复杂三维物体的物理原型。 其基础是一个称为分层制造(LM)的过程,该过程将数字模型切成层并连续打印这些层,每一层都在前一层的顶部。LM的一个新兴应用是计算机辅助组织工程(CATE),其目标是通过创建人工器官来恢复和改善人类健康。LM在CATE中用于构建可生物降解的支架结构,并将其与细胞一起生长以形成所需的器官。本研究将解决LM中的几大类算法问题,包括几何优化,路径规划,分解和包装,并利用解决方案来满足CATE中支架构建的需求。该研究还将涉及一个实验部分,其中包括算法的实施和测试以及通过物理原型验证结果。该研究的智力价值在于,它将提供一个严格的算法框架,在该框架内,可以解决LM中的一些具有挑战性的问题,包括支架构造,从而导致显着的设计和性能改进。同时,这些应用将提供有趣的新问题,将刺激几何算法的进一步研究。该研究的更广泛的影响是,它将促进计算机科学与CAD/CAM和CATE之间的进一步互动,通过参与这些领域的本科生和研究生的研究,将新的主题整合到算法设计课程中,并与业界合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ravi Janardan其他文献

Designing networks with compact routing tables
设计具有紧凑路由表的网络
  • DOI:
    10.1007/bf01762113
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    G. Frederickson;Ravi Janardan
  • 通讯作者:
    Ravi Janardan
Generalized intersection searching problems
广义交叉点搜索问题
Space-efficient ray-shooting and intersection searching: algorithms, dynamization, and applications
节省空间的光线拍摄和交叉点搜索:算法、动态化和应用
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siu;Ravi Janardan
  • 通讯作者:
    Ravi Janardan
A Technique for Adding Range Restrictions to Generalized Searching Problems
一种为广义搜索问题添加范围限制的技术
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Prosenjit Gupta;Ravi Janardan;M. Smid
  • 通讯作者:
    M. Smid
Efficient Top-k Queries for Orthogonal Ranges
正交范围的高效 Top-k 查询
  • DOI:
    10.1007/978-3-642-19094-0_13
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Rahul;Prosenjit Gupta;Ravi Janardan;K. Rajan
  • 通讯作者:
    K. Rajan

Ravi Janardan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ravi Janardan', 18)}}的其他基金

U.S.-India Cooperative Research: Geometric Query-Retrieval Problems on Aggregated Data
美印合作研究:聚合数据的几何查询检索问题
  • 批准号:
    0422775
  • 财政年份:
    2004
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
A Geometric Investigation of Layered Manufacturing: Algorithms, Software, and Fabrication
分层制造的几何研究:算法、软件和制造
  • 批准号:
    9712226
  • 财政年份:
    1997
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Efficient Dynamic Data Structures for Geometric Problems
几何问题的高效动态数据结构
  • 批准号:
    9200270
  • 财政年份:
    1992
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Research Initiation Award: Compact Schemes for Message Routing in Dynamic Networks
研究启动奖:动态网络中消息路由的紧凑方案
  • 批准号:
    8808574
  • 财政年份:
    1988
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了