Signal Recovery from Highly Incomplete Data
从高度不完整的数据中恢复信号
基本信息
- 批准号:0515362
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-01 至 2008-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A fundamental problem in science and technology concerns the recovery of an object---a digital signal or image---from incomplete measurements. The examples of such situations are numerous, ranging from the sampling of continuous signals in signal processing, to the measurement of the two-dimensional frequency spectrum of an image as in biomedical imaging. In Magnetic Resonance Imaging (MRI) for instance, one would like to reconstruct high-resolution images from heavily undersampled frequency data as this would allow image acquisition speeds far beyond those offered by current technologies. In all these applications, there are many more unknown signal values than available observations, a situation which a priori seems desperately hopeless.In many instances, the object we wish to recover is known to be structured in the sense that it is sparse or compressible. This means that the unknown object depends upon a smaller number of unknown parameters, with only a few significant entries in some fixed representation. This premise radically changes the problem, making the search for solutions feasible. The research involves a systematic effort to exploit and extend a mathematical breakthrough which shows that it is surprisingly possible to reconstruct such signalsaccurately, and sometimes even exactly, from a limited number of measurements. There are three main outcomes: the development of a coherent and comprehensive knowledge of what can and cannot beexpected from reconstruction strategies based upon incomplete information; the development of flexible and convenient algorithms able to handle large scale problems; the deployment of the resulting new concepts and tools into targeted applications. The initial applicative focus is in the field of Magnetic Resonance angiography, and on the design of a brand new generation of encoding schemes.
科学和技术中的一个基本问题是从不完整的测量中恢复物体-数字信号或图像。这种情况的例子很多,从信号处理中连续信号的采样到生物医学成像中图像的二维频谱测量。例如,在磁共振成像(MRI)中,人们希望从严重欠采样的频率数据重建高分辨率图像,因为这将允许图像采集速度远远超过当前技术所提供的速度。 在所有这些应用中,有更多的未知信号值比可用的观测,先验的情况下,似乎绝望绝望。在许多情况下,我们希望恢复的对象是已知的,在这个意义上,它是稀疏或可压缩的结构。这意味着未知对象依赖于较少数量的未知参数,在某些固定表示中只有少数有效条目。 这个前提从根本上改变了问题,使寻找解决方案变得可行。该研究涉及系统的努力,以利用和扩展数学突破,这表明它是令人惊讶的可能性,以重建这样的信号准确,有时甚至是完全,从有限的测量数量。 有三个主要成果:发展一个连贯和全面的知识,什么可以和不可以从基于不完整信息的重建策略中预期;发展灵活方便的算法,能够处理大规模的问题;部署由此产生的新概念和工具到有针对性的应用。 最初的应用重点是磁共振血管造影领域,以及全新一代编码方案的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanuel Candes其他文献
Active Statistical Inference
主动统计推断
- DOI:
10.48550/arxiv.2403.03208 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tijana Zrnic;Emmanuel Candes - 通讯作者:
Emmanuel Candes
Emmanuel Candes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanuel Candes', 18)}}的其他基金
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2032014 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
The Stanford Data Science Collaboratory
斯坦福数据科学合作实验室
- 批准号:
1934578 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Medium: Collaborative Research: Advances in the Theory and Practice of Low-Rank Matrix Recovery and Modeling
CIF:中:协作研究:低阶矩阵恢复和建模的理论与实践进展
- 批准号:
0963835 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: a Focused Research Group on Multiscale Geometric Analysis -- Theory, Tools, and Applications
协作研究:多尺度几何分析的重点研究小组——理论、工具和应用
- 批准号:
0140540 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Development of a Highly Efficient and Highly Selective Phosphorus Recovery System from Steelmaking Slag
高效、高选择性炼钢渣磷回收系统的开发
- 批准号:
23H03572 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing an in-situ risk management strategy for enhancing natural recovery of highly contaminated gold-mine-tailing impacted wetlands
制定原位风险管理策略,以加强受严重污染的金矿尾矿影响湿地的自然恢复
- 批准号:
567091-2021 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
EALIR - Development of new, highly-efficient techniques to increase the recovery of critical materials in lithium-ion battery recycling
EALIR - 开发新的高效技术以提高锂离子电池回收中关键材料的回收率
- 批准号:
10034857 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Developing an in-situ risk management strategy for enhancing natural recovery of highly contaminated gold-mine-tailing impacted wetlands
制定原位风险管理策略,以加强受严重污染的金矿尾矿影响湿地的自然恢复
- 批准号:
567091-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Development of a Highly Efficient In-Gel Protein Recovery Method for Structural Proteomics
开发用于结构蛋白质组学的高效凝胶内蛋白质回收方法
- 批准号:
19K05526 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Preparation of photoresponsive scaffolds that enable highly efficient biological recovery of rare metals
光响应支架的制备可实现稀有金属的高效生物回收
- 批准号:
19K22918 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Highly efficient removal and recovery of harmful fatty acid components in edible oil using a tubular oligosaccharide adsorbent
管状低聚糖吸附剂高效去除和回收食用油中有害脂肪酸成分
- 批准号:
19H04312 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Resource Recovery and Environmental Clean-up System By Highly Active Iron-Oxidizing Bacteria
高活性铁氧化菌资源回收与环境净化系统的开发
- 批准号:
18K11696 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Recovery of organics from oil sands process water and tailings with novel highly porous activated carbon-based absorbants produced from petroleum coke
使用由石油焦生产的新型高孔隙活性炭基吸收剂从油砂工艺水和尾矿中回收有机物
- 批准号:
453761-2013 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants
Production of phyllo-manganates by a fungal highly-reactive enzyme and environmental bioptechnological application including rare metals recovery
通过真菌高活性酶生产叶状锰酸盐以及包括稀有金属回收在内的环境生物技术应用
- 批准号:
16K12619 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research