Children's Causal Learning and Developing Knowledge of Mechanisms
儿童的因果学习和发展机制知识
基本信息
- 批准号:0518161
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The world is full of causal knowledge that children must discover. While there is little doubt that children learn physical, psychological, and biological knowledge at an amazing capacity, there is only a modest understanding of how children represent this causal knowledge or learn new causal relations. With support from the National Science Foundation, Dr. David Sobel examines the idea that a particular computational framework serves as a model for representing and learning causal knowledge. Preliminary investigations for this study have demonstrated that preschoolers engage in causal inferences according to the premises of this model. Dr. Sobel seeks to extend these findings to toddlers and infants. This would demonstrate that children possess sophisticated causal reasoning abilities from very early ages and would map out a description of how children represent their causal knowledge. Dr. Sobel also suggests a particular algorithm that describes how causal learning takes place. He will investigate children's use of this algorithm when learning both physical and psychological knowledge. This would demonstrate why particular developmental differences in causal learning abilities are present during the infant and preschool years.Much recent research and contemporary thinking suggests that children take an active role in constructing knowledge of their environment. Exactly how children do this is still a mystery. Understanding how children represent and learn causal knowledge should enable researchers to determine how to promote such learning. This would allow us to design better interventions for education, particularly for science education. Understanding how environmental factors contribute to causal learning would shed insight into how negative factors could be reduced. This could prevent children from becoming at-risk learners early in life. Finally, many developmental disorders have been diagnosed by citing that children lack particular causal reasoning abilities (such as psychological knowledge in the case of autism). Understanding how children acquire such causal knowledge might enable us to determine why children with autism (and other at-risk populations) do not acquire such cognitive abilities.
这个世界充满了儿童必须发现的因果知识。毫无疑问,儿童以惊人的能力学习生理、心理和生物知识,但对于儿童如何表现这些因果知识或学习新的因果关系,人们只有一个微不足道的理解。在国家科学基金会的支持下,大卫·索贝尔博士研究了特定的计算框架作为表示和学习因果知识的模型的想法。这项研究的初步调查表明,学龄前儿童根据这一模型的前提进行因果推理。索贝尔博士试图将这些发现推广到幼儿和婴儿身上。这将证明儿童在很小的时候就具有复杂的因果推理能力,并将绘制出儿童如何表示他们的因果知识的描述。索贝尔博士还提出了一种描述因果学习过程的特殊算法。他将调查儿童在学习生理和心理知识时使用这种算法的情况。这将解释为什么在婴幼儿和学龄前阶段,因果学习能力会出现特殊的发展差异。许多最近的研究和当代思维表明,儿童在构建对环境的知识方面发挥了积极的作用。孩子们到底是如何做到这一点的,仍然是一个谜。了解儿童如何表现和学习因果知识应该使研究人员能够确定如何促进这种学习。这将使我们能够为教育,特别是科学教育设计更好的干预措施。了解环境因素如何促进因果学习,将有助于深入了解如何减少负面因素。这可以防止儿童在早期成为有风险的学习者。最后,许多发育障碍被诊断为儿童缺乏特殊的因果推理能力(例如自闭症的心理学知识)。了解儿童是如何获得这种因果知识的,可能使我们能够确定为什么患有自闭症的儿童(和其他高危人群)不能获得这种认知能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Sobel其他文献
Place- and Community-Based Education in Schools
学校以地方和社区为基础的教育
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
G. Smith;David Sobel - 通讯作者:
David Sobel
A robust hybrid theory of well-being
- DOI:
10.1007/s11098-020-01586-w - 发表时间:
2020-11-04 - 期刊:
- 影响因子:1.300
- 作者:
Steven Wall;David Sobel - 通讯作者:
David Sobel
The Impotence of the Demandingness Objection
苛求性反对的无能为力
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
David Sobel - 通讯作者:
David Sobel
PD53-07 THE FEASIBILITY OF DISCHARGING PATIENTS WITHOUT OPIOIDS AFTER URETEROSCOPY
- DOI:
10.1016/j.juro.2018.02.2503 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
David Sobel;Theodore Cisu;Andrew Pham;Gillian Stearns;Kevan Sternberg - 通讯作者:
Kevan Sternberg
Mapmaking from the Inside Out: The Cartography of Childhood.
由内而外的地图制作:童年的制图。
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
David Sobel - 通讯作者:
David Sobel
David Sobel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Sobel', 18)}}的其他基金
Fostering STEM Engagement from Parent-Child Interaction
通过亲子互动促进 STEM 参与
- 批准号:
2300459 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
RAPID: Exploring the Effects of Parent-Child Interactions on Children’s Learning about Handwashing Behavior and Disease Prevention
RAPID:探索亲子互动对儿童学习洗手行为和疾病预防的影响
- 批准号:
2033368 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
The Dynamics of Inhibition in Social Cognitive Development
社会认知发展中抑制的动态
- 批准号:
1917639 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Young children's beliefs about causal systems: Learning about belief revision in the lab and in museums
幼儿对因果系统的信念:在实验室和博物馆中了解信念修正
- 批准号:
1661068 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Explaining, exploring, and scientific reasoning in museum settings
合作研究:博物馆环境中的解释、探索和科学推理
- 批准号:
1420548 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
The emergence of diagnostic reasoning and scientific thinking.
诊断推理和科学思维的出现。
- 批准号:
1223777 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Causal Knowledge-Empowered Adaptive Federated Learning
因果知识赋能的自适应联邦学习
- 批准号:
DP240102088 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Collaborative Research: Causal Structures: Experiments and Machine Learning
协作研究:因果结构:实验和机器学习
- 批准号:
2315665 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
- 批准号:
23K01372 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
- 批准号:
23H03555 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant