IMR: Collaborative Research: Acquisition of an Atom Interferometer/Diffractometer for Materials Research and Education

IMR:协作研究:购买原子干涉仪/衍射仪用于材料研究和教育

基本信息

  • 批准号:
    0526945
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

Quantum physics ascribes wave-like properties to material objects in order to correctly predict their behavior. Accordingly, atoms and molecules exhibit interference phenomena (diffraction, refraction, etc.) analogous to sound, light, or water waves. In fact, an entire field of "atom optics" has emerged to measure and exploit this wave-like behavior. The characteristic wavelength of an atom/molecule (its "de Broglie" wavelength) is typically under 0.1 nm, about the size of an atom, and some 10,000 times smaller than the wavelength of visible light. Atom optics therefore allows researchers to observe and even influence material interactions on the atomic scale (nano- or sub-nanometer). It often makes use of nanofabricated experimental components. The requested funding will procure an experimental apparatus that employs nanoscale diffraction gratings to split and recombine a beam of atoms/molecules, to make atom wave interference patterns, exactly as would be done using light waves in a conventional optical interferometer. This yields atom optics interference patterns that shift in position when the molecules in one beam path are perturbed relative to those in the other, giving a powerful tool for scientific measurements and technological applications. Atom optics interferometers can be employed as motion sensors (rotation, acceleration) or as scientific tools to measure a broad spectrum of physical and materials properties (gas-gas interactions, gas-surface interactions, precision metrology). Given the minute wavelength of the atom/molecule, atom interferometry offers vastly improved resolution and sensitivity over optical interferometry, in addition to its atomic sensitivity. Matter wave interferometry is a very striking manifestation of quantum physics, providing a superb vehicle for education and public outreach. The apparatus is by far the most advanced of its kind that ever been built, well over a million dollars worth of equipment that would be difficult or impossible to construct in the USA. It is being made available to the P.I's by special arrangement with the German Max-Planck-Society at essentially no cost.A universal atomic and molecular beam interferometer will enable new measurements in surface science, chemical physics, and quantum optics. By combining a detector that works for every atomic and molecular species with an interferometer based on nanostructure diffraction gratings, the applications of de Broglie wave interferometry will be greatly expanded to address several new scientific goals. Atom interferometers based on nanostructure gratings have recently proven their ability to detect minute perturbations to atomic de Broglie waves. Examples of quantities already measured with this technique include: (1) the polarizability of atoms, (2) the strength of atom-surface van der Waals forces, (3) the rotation rate of a platform, and (4) the rate of quantum decoherence from scattering atoms or photons. In addition, atom optics with supersonic beams and nanostructures have demonstrated (5) coherent quantum reflection of atom waves, (6) generation of atom holograms, (7) focusing with Fresnel zone plates, and (10) the first quantitative detection of 4He2 molecules. The opportunity to generalize these measurement techniques for all gaseous atoms and molecules is now available in the form of a new apparatus. Exploiting the principle of de Broglie wave interferometry for multiple atomic and molecular species will have several benefits. The tensor polarizability of dimer molecules, the atom-surface interaction strength for polar molecules, and the rate of quantum decoherence for complex molecules are all important quantities that merit several series of experiments in the fields of chemical physics, surface science and quantum optics. The advancement of nanotechnology as well as atomic and molecular beam science and education relies on new applications such as molecular beam interferometry. Collaborations between the University of Arizona, and Arizona State University and the German Max-Planck-Society will also be strengthened by this instrumentation for materials research.
量子物理学将波的性质归因于物质对象,以便正确预测它们的行为。 因此,原子和分子表现出干涉现象(衍射、折射等)。类似于声波、光波或水波。事实上,已经出现了一个完整的“原子光学”领域来测量和利用这种波状行为。 原子/分子的特征波长(其“布罗意”波长)通常在0.1 nm以下,大约是原子的大小,并且比可见光的波长小约10,000倍。因此,原子光学允许研究人员观察甚至影响原子尺度(纳米或亚纳米)的材料相互作用。 它经常使用纳米制造的实验组件。 申请的资金将用于采购一种实验装置,该装置采用纳米级衍射光栅来分裂和重组原子/分子束,以制作原子波干涉图案,就像在传统的光学干涉仪中使用光波一样。这产生了原子光学干涉图案,当一个光束路径中的分子相对于另一个光束路径中的分子受到扰动时,该图案的位置发生变化,为科学测量和技术应用提供了强大的工具。 原子光学干涉仪可以用作运动传感器(旋转,加速度)或作为科学工具来测量广泛的物理和材料特性(气体-气体相互作用,气体-表面相互作用,精密计量)。 考虑到原子/分子的微小波长,原子干涉测量法除了其原子灵敏度之外,还提供了比光学干涉测量法更高的分辨率和灵敏度。 物质波干涉测量是量子物理学的一个非常引人注目的表现,为教育和公共宣传提供了一个极好的工具。 该设备是迄今为止建造的同类设备中最先进的,价值超过100万美元的设备在美国很难或不可能建造。它是通过与德国马克斯-普朗克学会的特别安排提供给私人研究人员的,基本上是免费的。一个通用的原子和分子束干涉仪将使表面科学、化学物理和量子光学的新测量成为可能。通过将适用于每种原子和分子的探测器与基于纳米结构衍射光栅的干涉仪相结合,德布罗意布罗意波干涉测量的应用将大大扩展,以解决几个新的科学目标。 基于纳米结构光栅的原子干涉仪最近证明了它们能够检测原子德布罗意波的微小扰动。布罗意波。已经用这种技术测量的量的例子包括:(1)原子的极化率,(2)原子表面货车范德华力的强度,(3)平台的旋转速率,以及(4)散射原子或光子的量子退相干速率。 此外,具有超声束和纳米结构的原子光学已经证明了(5)原子波的相干量子反射,(6)原子全息图的产生,(7)菲涅耳波带片的聚焦,以及(10)4 He 2分子的首次定量检测。现在有机会以新仪器的形式将这些测量技术推广到所有气体原子和分子。将德布罗意布罗意波干涉测量法的原理用于多个原子和分子种类将具有若干益处。 二聚体分子的张量极化率、极性分子的原子-表面相互作用强度以及复杂分子的量子退相干速率都是化学物理、表面科学和量子光学领域中值得进行多个系列实验的重要物理量。 纳米技术以及原子和分子束科学和教育的进步依赖于分子束干涉测量等新的应用。 亚利桑那大学、亚利桑那州立大学和德国马克斯-普朗克学会之间的合作也将通过这种用于材料研究的仪器得到加强。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

R. Bruce Doak其他文献

Elastic and inelastic scattering of He atoms from the (001) crystal surface of MgO
  • DOI:
    10.1016/s0039-6028(83)80026-0
  • 发表时间:
    1983-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    G. Brusdeylins;R. Bruce Doak;J.G. Skofronick;J. Peter Toennies
  • 通讯作者:
    J. Peter Toennies

R. Bruce Doak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('R. Bruce Doak', 18)}}的其他基金

Molecular Beam Study of the Surface Reaction Chemistry of Metastable Molecular Nitrogen
亚稳态氮分子表面反应化学的分子束研究
  • 批准号:
    0234766
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SGER: Superleak Superfluid Helium Free-Jets: Development and Use
SGER:超级泄漏超流自由氦喷嘴:开发和使用
  • 批准号:
    0228541
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Measurement of Atomic Integral Scattering Cross Sections at Extremely Low Collision Velocities
极低碰撞速度下原子积分散射截面的测量
  • 批准号:
    9223053
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319367
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319486
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2344341
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
  • 批准号:
    2319421
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319488
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
  • 批准号:
    2319342
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
  • 批准号:
    2319422
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Measuring Internet Access Networks Across Space and Time
合作研究:IMR:MM-1A:跨空间和时间测量互联网接入网络
  • 批准号:
    2319603
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319368
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了