Multi-Agent Plan Management for Socio-Cognitive Orthotics

社会认知矫形器的多智能体计划管理

基本信息

项目摘要

The objective of this project is to solve technical problems that need to be overcome to build socio-cognitive orthotic systems, which will augment human cognitive capabilities to promote social interactions. Information technology can help a person with cognitive impairment in managing his or her everyday life, by modeling the activities the person wants or needs to do, monitoring the person's activities as they unfold, and guiding the person to ensure that the most important activities occur. Thus, information technology can provide a cognitive orthotic that augments reduced cognitive abilities and helps the person live independently. Unfortunately, though, replacing dependence on other people with reliance on information technology can mean fewer opportunities for social interaction, which in turn can lead to loneliness and isolation. To solve this problem, a person's socio-cognitive orthotic system could be networked with the systems of other people. Now, as time passes and people make choices about their activities, these choices can help bring about, or make more difficult, potential planned social activities. Thus, the networked orthotic systems, as agents acting on behalf of their associated users, need to behave as a collaborative multi-agent system to cooperatively manage the users' plans. Each separate system needs to monitor and guide its user's activities while giving its user as much autonomy as possible to independently control his or her day, and yet must also attempt to maintain desirable options for social activities that obviously must be timed well with the schedules of other participants. And all this should be done in a timely, adaptive, and efficient way. The hypothesis that this project will investigate is that incorporating hierarchical activity abstractions and richer constraint models into well-founded temporal constraint network representations, and augmenting distributed constraint reasoning techniques to adaptively handle these more flexible representations, will provide a principled and efficient foundation for collaborative plan management systems for individual and social activities. Some of the key ideas to be investigated include: using abstract activity specifications that can postpone commitments about which particular activities will be done, when, and by whom, until decisions need to be made; developing algorithms that can exploit, and even introduce, abstractions in activities, their timing, and (for social activities) their participants to increase flexibility and to reduce computation and communication; representing alternative activity plans, even if they contradict each other, to leave many options open for important social (and individual) activities; and capturing activity importance and costs of violating constraints in the models to calculate tradeoffs in the (likely) case where the multi-agent plans evolve such that contentions arise. The project will build from the current state-of-the-art in hierarchical multi-agent planning and coordination, single-agent plan management, and distributed constraint reasoning. It will incorporate new ideas in multi-agent activity modeling, continual distributed constraint network maintenance, and adaptive refinement and constraint relaxation mechanisms, to innovate practical computational techniques that will scale to multi-agent applications involving complex interrelationships in continually-evolving worlds. The project will design, develop, analyze, and empirically test novel techniques for continual collaborative multi-agent management of loosely-coupled plans, a problem that deserves more study and for which no general intuitions or solution methods exist. Developing socio-cognitive orthotics, where information technology can be cost-effectively used to simultaneously promote independence while combating isolation for cognitively-impaired people, can have tremendous societal benefits. A further expected impact of this project is that it will form the basis for a course in information technology for cognitive assistance, which will introduce first-year undergraduates not only to computer science concepts but also to the possible societal contributions computer scientists can make. It is expected that such a course can attract more students, and particularly women and minorities, to major in computer science.
该项目的目标是解决需要克服的技术问题,以建立社会认知矫正系统,这将增强人类的认知能力,促进社会互动。信息技术可以帮助有认知障碍的人管理他或她的日常生活,通过建模的人想要或需要做的活动,监测人的活动,因为他们展开,并指导人,以确保最重要的活动发生。因此,信息技术可以提供一种认知矫正器,增强降低的认知能力,并帮助人独立生活。然而,不幸的是,用依赖信息技术取代对他人的依赖可能意味着社交互动的机会减少,这反过来又会导致孤独和孤立。为了解决这个问题,一个人的社会认知矫正系统可以与其他人的系统联网。现在,随着时间的推移,人们对他们的活动做出选择,这些选择可以帮助实现,或者使潜在的计划社会活动变得更加困难。因此,作为代表其相关联用户的代理的联网矫正系统需要表现为协作多代理系统以协作地管理用户的计划。每个单独的系统都需要监视和指导其用户的活动,同时给予其用户尽可能多的自主权来独立地控制他或她的一天,并且还必须尝试为社交活动保持期望的选项,这些社交活动显然必须与其他参与者的日程安排良好地定时。所有这些都应该以及时、适应性强和有效的方式完成。本项目将研究的假设是,将分层活动抽象和更丰富的约束模型纳入有根据的时间约束网络表示,并增强分布式约束推理技术,以适应性地处理这些更灵活的表示,将为个人和社会活动的协作计划管理系统提供一个原则和有效的基础。需要研究的一些关键思想包括:使用抽象活动规范,可以推迟关于哪些特定活动将在何时完成以及由谁完成的承诺,直到需要做出决策;开发算法,可以利用甚至引入活动中的抽象,它们的时序,(对于社交活动)他们的参与者,以增加灵活性,减少计算和沟通;代表替代活动计划,即使它们相互矛盾,为重要的社会活动留下许多选择。(和个人)活动;以及捕获活动重要性和违反模型中的约束的成本,以计算在多代理计划演变为引起争用的(可能的)情况下的折衷。该项目将建立从目前的国家的最先进的分层多代理规划和协调,单代理计划管理,分布式约束推理。它将在多智能体活动建模,持续分布式约束网络维护,自适应优化和约束放松机制中引入新的想法,以创新实用的计算技术,这些技术将扩展到涉及不断发展的世界中复杂相互关系的多智能体应用程序。该项目将设计,开发,分析和经验测试新技术,用于松散耦合计划的持续协作多代理管理,这是一个值得更多研究的问题,并且没有一般的直觉或解决方法。发展社会认知矫正术,可以经济有效地利用信息技术,在促进独立的同时,消除认知障碍者的孤立,可以产生巨大的社会效益。该项目的另一个预期影响是,它将成为认知辅助信息技术课程的基础,该课程不仅将向一年级本科生介绍计算机科学概念,还将介绍计算机科学家可能做出的社会贡献。预计这一课程将吸引更多的学生,特别是妇女和少数民族,主修计算机科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edmund Durfee其他文献

How a diverse research ecosystem has generated new rehabilitation technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
  • DOI:
    10.1186/s12984-017-0321-3
  • 发表时间:
    2017-11-06
  • 期刊:
  • 影响因子:
    5.200
  • 作者:
    David J. Reinkensmeyer;Sarah Blackstone;Cathy Bodine;John Brabyn;David Brienza;Kevin Caves;Frank DeRuyter;Edmund Durfee;Stefania Fatone;Geoff Fernie;Steven Gard;Patricia Karg;Todd A. Kuiken;Gerald F. Harris;Mike Jones;Yue Li;Jordana Maisel;Michael McCue;Michelle A. Meade;Helena Mitchell;Tracy L. Mitzner;James L. Patton;Philip S. Requejo;James H. Rimmer;Wendy A. Rogers;W. Zev Rymer;Jon A. Sanford;Lawrence Schneider;Levin Sliker;Stephen Sprigle;Aaron Steinfeld;Edward Steinfeld;Gregg Vanderheiden;Carolee Winstein;Li-Qun Zhang;Thomas Corfman
  • 通讯作者:
    Thomas Corfman

Edmund Durfee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edmund Durfee', 18)}}的其他基金

RI:Medium: Collaborative Research: Creating Organizationally Adept Software Agents and their Organizations
RI:中:协作研究:创建组织熟练的软件代理及其组织
  • 批准号:
    0964512
  • 财政年份:
    2010
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
ITR/PE+AP Strategic Positioning in Information Product Space
ITR/PE AP 信息产品领域战略定位
  • 批准号:
    0112669
  • 财政年份:
    2001
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
PYI: Real-Time AI, Cooperative Problem Solving, and Intelligent Systems
PYI:实时人工智能、协作解决问题和智能系统
  • 批准号:
    9158473
  • 财政年份:
    1991
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
DIAL: A Distributed Intelligent Agent Laboratory
DIAL:分布式智能代理实验室
  • 批准号:
    9010645
  • 财政年份:
    1990
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
A Hierarchical Negotiation Protocol Using Multi-Dimensional Behavior Specifications
使用多维行为规范的分层协商协议
  • 批准号:
    9015423
  • 财政年份:
    1990
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Agent的自动化渗透测试技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI Agent赋能中小企业智能决策系统研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
计算机控制Agent在可交互式企业征信报告生成的应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
大模型Agent驱动的AI制药关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
混合多元区域情境下多Agent的自主协同决策方法研究
  • 批准号:
    62306099
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于操控员情境意识状态可解释Agent的智能交互触发机制研究
  • 批准号:
    62376220
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于多Agent仿真模型的新能源汽车市场渗透研究
  • 批准号:
    2023JJ60196
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向联排联调的城市复合洪涝灾害风险Agent建模与智能决策
  • 批准号:
    42371092
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
实施科学驱动Agent仿真构建脑卒中患者心理与行为干预规程——基于阶梯式楔形随机对照试验
  • 批准号:
    82260281
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于Agent 技术的职业高校校企协同创新主体行为建模研究
  • 批准号:
    2021JJ60029
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
  • 批准号:
    2339015
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
  • 批准号:
    24K14913
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-agent Self-improving of Large Language Models (LLMs)
大型语言模型 (LLM) 的多智能体自我改进
  • 批准号:
    2903811
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Studentship
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
Development of a Cathepsin V inhibitor for application as an anti-tumour agent.
开发用作抗肿瘤剂的组织蛋白酶 V 抑制剂。
  • 批准号:
    MR/Y503447/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Research Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
  • 批准号:
    2418539
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Continuing Grant
AF: Small: Equilibrium Computation and Multi-Agent Learning in High-Dimensional Games
AF:小:高维游戏中的平衡计算和多智能体学习
  • 批准号:
    2342642
  • 财政年份:
    2024
  • 资助金额:
    $ 53.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了