Reasoning to Predict Fate of Chemicals in the Environment

推理预测环境中化学品的归宿

基本信息

  • 批准号:
    0543416
  • 负责人:
  • 金额:
    $ 61.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The Universityof Minesota is awarded a grant to further develop a prototype computational system that predicts metabolic pathways for any given compound. The current system predicts all possible pathways based on metabolic rules; hundreds of pathway branches are generated. To use this effectively to predict the fate of chemicals in the environment, reasoning capabilities will need to be added. The reasoning tools, developed during the research proposed here, will select likely pathways, and be a platform for discerning different chemical fates in different environments, as needed by regulators and industry. The research project is entirely in the public domain and will connect to many partners worldwide. It will be synergistic with the efforts of Proctor & Gamble, Brussels and the ALARM project of the 6th European Union Framework Program. The Pathway Predictive System (PPS) is based on 250 metabolic rules. PPS rules simulate virtually all plausible biochemical pathways for a compound, based on comparison with human experts, known pathways and bench experimental verification. To move toward a true depiction of environmental fate, the first standard condition to be simulated will be the aerobic environment, with moderate moisture and salinity, no competing chemical toxicants, and at 25oC. A comprehensive approach will be used to prioritize biotransformation rules. First, human experts will rate a rule as applying under those conditions on a 1-5 scale: 1) Highly likely; 2) Likely; 3) Neutral; 4) Unlikely; 5) Highly unlikely. This will provide an ordinal ranking of reactions. Expert knowledge will be augmented using thermodynamic techniques. Preliminary data suggests that thermodynamics can minimally select against futile metabolic cycles and thermodynamically unfavorable isomerization reactions. Rapidly-growing microbial genomic data will also be studied to improve biotransformation prioritization. The project will quantitatively assess the prevalence of genes and enzymes that participate in reactions covered by current PPS rules. There will be a further assessment of whether those genes and enzymes are found in bacteria specific to certain environments, such as aerobes, anaerobes, and halophiles. The system will be developed using the resources of the University of Minnesota Supercomputing Institute and be publicly mirrored in Europe, for use by participants in the ALARM program and other clients. The rules and use of the decision-making software will be freely available to all users on the web. The system will also be used educationally in University classes throughout the nation via a network of collaborating academicians. This will be used to teach students chemistry, metabolic biochemistry, genomics and environmental sciences, and help us validate the pathway priority prediction system. All of the results will be made available to the scientific community through our website.
Minesota大学获得了一笔赠款,以进一步开发一个原型计算系统,预测任何给定化合物的代谢途径。目前的系统基于代谢规则预测所有可能的途径;生成数百个途径分支。为了有效地利用这一点来预测环境中化学品的命运,需要增加推理能力。在这里提出的研究期间开发的推理工具将选择可能的途径,并根据监管机构和行业的需要,成为在不同环境中识别不同化学品命运的平台。该研究项目完全属于公共领域,并将与世界各地的许多合作伙伴建立联系。它将与普罗克特·甘布尔、布鲁塞尔和第六个欧盟框架计划的警报项目的努力产生协同作用。路径预测系统(PPS)基于250条代谢规则。PPS规则基于与人类专家、已知途径和实验室实验验证的比较,模拟了化合物几乎所有可能的生化途径。为了更真实地描述环境的命运,第一个要模拟的标准条件将是有氧环境,适度的湿度和盐度,没有竞争性的化学毒物,温度为25 ℃。将采用一种综合办法来确定生物转化规则的优先次序。首先,人类专家会在1-5级的范围内对规则进行评级:1)很可能; 2)可能; 3)中性; 4)不太可能; 5)极不可能。这将提供反应的顺序排序。专业知识将增加使用热力学技术。初步数据表明,热力学可以最低限度地选择对无用的代谢循环和有害的异构化反应。还将研究快速增长的微生物基因组数据,以提高生物转化的优先级。该项目将定量评估参与当前PPS规则涵盖的反应的基因和酶的流行率。将进一步评估这些基因和酶是否存在于特定环境的细菌中,如需氧菌,厌氧菌和嗜盐菌。该系统将利用明尼苏达大学超级计算研究所的资源开发,并在欧洲公开镜像,供ALARM计划的参与者和其他客户使用。决策软件的规则和使用将在网上免费提供给所有用户。该系统还将通过合作学者网络在全国各地的大学课堂上进行教育。这将用于教授学生化学,代谢生物化学,基因组学和环境科学,并帮助我们验证路径优先预测系统。所有结果将通过我们的网站提供给科学界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence Wackett其他文献

Lawrence Wackett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence Wackett', 18)}}的其他基金

Collaborative Research: Interfacing Students at Three Universities to Elucidate Enzymatic Transformations of Guanide Compounds that Impact Health and the Environment
合作研究:与三所大学的学生合作,阐明影响健康和环境的胍化合物的酶促转化
  • 批准号:
    2203750
  • 财政年份:
    2022
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Continuing Grant
PFI-BIC: Silica-based Bioremediation Technology Platform with Applications for a Growing Shale Gas/Oil Industry
PFI-BIC:基于二氧化硅的生物修复技术平台,适用于不断发展的页岩气/石油行业
  • 批准号:
    1237754
  • 财政年份:
    2012
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Standard Grant

相似海外基金

Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Fellowship
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Standard Grant
Sensory and bioengineering approaches to predict hearing abilities in fish
预测鱼类听力的感官和生物工程方法
  • 批准号:
    DE240100188
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Discovery Early Career Researcher Award
Active one health surveillance in LMICs to monitor and predict Antimicrobial Resistance Using Metagenomics (ALARUM)
在中低收入国家中开展主动单一健康监测,利用宏基因组学 (ALARUM) 监测和预测抗菌药物耐药性
  • 批准号:
    MR/Y034287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Research Grant
Inter-brain synchrony analysis in teleoperated collaborative social tasks to predict collective performance
远程操作协作社交任务中的脑间同步分析以预测集体表现
  • 批准号:
    24K17253
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
  • 批准号:
    24K04051
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
  • 批准号:
    2902083
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Studentship
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y00180X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Research Grant
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
  • 批准号:
    MR/Y503472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了