CAREER: Distributed Space-Time Processing for Sensor Networks

职业:传感器网络的分布式时空处理

基本信息

  • 批准号:
    0545571
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-15 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

Large-scale sensor networks that can monitor an environment at close range with high spatial and temporal resolutions are expected to play an important role in various applications, e.g. assessing ``health'' of machines, aerospace vehicles, and civil-engineering structures; environmental, medical, food-safety, and habitat monitoring; energy management, inventory control, home and building automation, etc. Each node in the network will have limited sensing, signal processing, and communication capabilities, but by cooperating with each other they will accomplish tasks that are difficult to perform with conventional centralized sensing systems.This research focuses on novel solutions for prominent signal processing problems in sensor network design: efficiently extracting information through distributed (neighborhood-based) processing, mitigating practical difficulties such as node localization errors and spatially correlated measurements, and conserving energy through active node selection. Distributed Bayesian algorithms are being developed for estimating physical phenomena in the presence of node location uncertainties; ignoring these uncertainties may lead to poor estimation and detection performance. The investigators also study nonparametric distributed signal processing approaches under the practically important scenario where parametric models for the response function and noise distribution are unknown. Here, the goal is to provide reliable inference about the observed phenomenon that is comparable to that achieved using exact parametric models. Educational goals of the program include incorporating modern teaching techniques and statistical signal processing applications into the undergraduate engineering curriculum and integrating state-of-the-art signal processing into the graduate engineering curriculum at the Iowa State University. The research results and teaching tools developed in this project are made available to a broad scientific community through the Internet and publication in scientific journals.
大规模传感器网络可以近距离监测环境,具有高空间和时间分辨率,有望在各种应用中发挥重要作用,例如评估机器,航空航天飞行器和土木工程结构的“健康”;环境、医疗、食品安全和生境监测;能源管理、库存控制、家居及楼宇自动化等。网络中的每个节点将具有有限的传感、信号处理和通信能力,但通过相互合作,它们将完成传统集中式传感系统难以完成的任务。本研究主要针对传感器网络设计中突出的信号处理问题:通过分布式(基于邻域的)处理高效提取信息,减轻节点定位误差和空间相关测量等实际困难,以及通过主动节点选择节约能源。正在开发分布式贝叶斯算法,用于估计存在节点位置不确定性的物理现象;忽略这些不确定性可能导致较差的估计和检测性能。研究人员还研究了在响应函数和噪声分布的参数模型未知的实际重要场景下的非参数分布信号处理方法。在这里,目标是提供关于观察到的现象的可靠推断,这种推断与使用精确参数模型所获得的推断相当。该项目的教育目标包括将现代教学技术和统计信号处理应用纳入本科工程课程,并将最先进的信号处理融入爱荷华州立大学的研究生工程课程。本项目开发的研究成果和教学工具将通过互联网向广大科学界提供,并在科学期刊上发表。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sparse Signal Reconstruction via ECME Hard Thresholding
通过 ECME 硬阈值重建稀疏信号
Bayesian Complex Amplitude Estimation and Adaptive Matched Filter Detection in Low-Rank Interference
低阶干扰中的贝叶斯复振幅估计和自适应匹配滤波器检测
Sparse Signal Reconstruction from Quantized Noisy Measurements via GEM Hard Thresholding
  • DOI:
    10.1109/tsp.2012.2185231
  • 发表时间:
    2012-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Kun Qiu;Aleksandar Dogandzic
  • 通讯作者:
    Kun Qiu;Aleksandar Dogandzic
Distributed Estimation and Detection for Sensor Networks Using Hidden Markov Random Field Models
  • DOI:
    10.1109/tsp.2006.877659
  • 发表时间:
    2006-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Aleksandar Dogandzic;Benhong Zhang
  • 通讯作者:
    Aleksandar Dogandzic;Benhong Zhang
Decentralized Random-Field Estimation for Sensor Networks Using Quantized Spatially Correlated Data and Fusion-Center Feedback
使用量化空间相关数据和融合中心反馈的传感器网络分散随机场估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandar Dogandzic其他文献

Finite-length MIMO equalization using canonical correlation analysis
使用典型相关分析的有限长度 MIMO 均衡
Parametric Signal Estimation Using Sensor Networks in the Presence of Node Localization Errors
在存在节点定位误差的情况下使用传感器网络进行参数信号估计
Complex Signal Amplitude Estimation and Adaptive Detection in Unknown Low-rank Interference
未知低阶干扰中的复信号幅度估计和自适应检测
Bayesian NDE Defect Signal Analysis
贝叶斯 NDE 缺陷信号分析
Estimation of propagating dipole sources by EEG/MEG sensor arrays
通过 EEG/MEG 传感器阵列估计传播偶极子源

Aleksandar Dogandzic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandar Dogandzic', 18)}}的其他基金

CIF: Small: Model-based sparse X-ray CT signal processing using polychromatic measurements
CIF:小型:使用多色测量进行基于模型的稀疏 X 射线 CT 信号处理
  • 批准号:
    1421480
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235140
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SPACE: fully decentralised distributed learning for tradeoff of privacy, accuracy, communication complexity, and efficiency
SPACE:完全去中心化的分布式学习,以权衡隐私、准确性、通信复杂性和效率
  • 批准号:
    900261
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235139
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SPACE: fully decentralised distributed learning for tradeoff of privacy, accuracy, communication complexity, and efficiency
SPACE:完全去中心化的分布式学习,以权衡隐私、准确性、通信复杂性和效率
  • 批准号:
    10046257
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    CR&D Bilateral
High-Spacial-Resolution Distributed Integrated Biosensors Using Localized Two-Way Space-Time Synchronization
使用局部双向时空同步的高分辨率分布式集成生物传感器
  • 批准号:
    22H03557
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An epidemic simulation based on a multi-agent system distributed in a continuous space
基于连续空间分布的多智能体系统的流行病模拟
  • 批准号:
    21K12064
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: DASI Track 1: Development of a Distributed Multiple-Input Multiple-Output (MIMO) Meteor Radar Network for Space Weather Research
合作研究:DASI Track 1:开发用于空间天气研究的分布式多输入多输出 (MIMO) 流星雷达网络
  • 批准号:
    1933005
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DASI Track 1: Development of a Distributed Multiple-Input Multiple-Output (MIMO) Meteor Radar Network for Space Weather Research
合作研究:DASI Track 1:开发用于空间天气研究的分布式多输入多输出 (MIMO) 流星雷达网络
  • 批准号:
    1933007
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Open Space Network: Building sustainable distributed working spaces for autonomous teams.
开放空间网络:为自治团队构建可持续的分布式工作空间。
  • 批准号:
    79089
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
Active Shape Control of Membrane Space Structures via Distributed Input Utilizing Solar Radiation Pressure
利用太阳辐射压力通过分布式输入对膜空间结构进行主动形状控制
  • 批准号:
    18J11615
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了