CAREER: Random Networks for Wireless Communication
职业:无线通信的随机网络
基本信息
- 批准号:0546235
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Motivated by the need to understand the basic properties of next generation large-scale wireless systems, this project introduces new paradigms for their analysis and design that lie at the frontier of statistical physics and network information theory. Leveraging state of the art tools from random graphs and percolation theory, as well as developing new methods, the objective is to set the foundations for a new theory of large-scale communication systems. In wireless networks there is no a priori notion of static links, but only spatial configurations of nodes that can share the medium in arbitrarily complex ways. Hence, a new dynamic definition of network link is introduced. This depends on the notion of interference and of information rate. Exploiting geometric properties of node configurations, a series of fundamental problems that range from achievable throughput to energy efficiency, fault tolerance, and distributed network coding are then considered.The research effort is complemented by an educational effort to train new engineers through curriculum development, plans to introduce a new course on random networks to be taught at the graduate level, and through the writing of a book devoted to random networks for communication.Expected results include the foundations of a new mathematical theory that will lead to basic advancements in both the current understanding and the predicted behavior of large-scale networks of wireless devices. Results are also expected to have implications well beyond the field of wireless communication networks, both in terms of the introduction of new mathematical methods, and of their applicability to other fields of science.
由于需要了解下一代大规模无线系统的基本特性,该项目为其分析和设计引入了新的范例,这些范例位于统计物理和网络信息理论的前沿。利用随机图和渗透理论中最先进的工具,以及开发新的方法,目标是为大规模通信系统的新理论奠定基础。在无线网络中,没有静态链路的先验概念,只有节点的空间配置,这些节点可以以任意复杂的方式共享媒体。为此,提出了一种新的网络链路动态定义。这取决于干扰和信息率的概念。利用节点配置的几何特性,然后考虑一系列基本问题,从可实现的吞吐量到能源效率、容错和分布式网络编码。这项研究工作还得到一项教育工作的补充,即通过制定课程、计划在研究生阶段开设一门关于随机网络的新课程以及编写一本专门讨论用于通信的随机网络的书来培训新工程师。预期的结果包括一个新的数学理论的基础,这将导致对大规模无线设备网络的当前理解和预测行为的基本进步。预计研究结果的影响将远远超出无线通信网络领域,无论是在引入新的数学方法方面,还是在它们对其他科学领域的适用性方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Massimo Franceschetti其他文献
Particle Density Retrieval in Random Media Using a Percolation Model and a Particle Swarm Optimizer
使用渗流模型和粒子群优化器进行随机介质中的粒子密度检索
- DOI:
10.1109/lawp.2008.921140 - 发表时间:
2008 - 期刊:
- 影响因子:4.2
- 作者:
A. Martini;M. Donelli;Massimo Franceschetti;andAndrea Massa - 通讯作者:
andAndrea Massa
Stochastic rays pulse propagation
随机射线脉冲传播
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:5.7
- 作者:
Massimo Franceschetti - 通讯作者:
Massimo Franceschetti
Massimo Franceschetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Massimo Franceschetti', 18)}}的其他基金
Collaborative Research: The value of Information in Networked Control: a Utility Based Approach
协作研究:信息在网络控制中的价值:基于效用的方法
- 批准号:
2127946 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAPID: A Controlled Response to COVID-19
RAPID:对 COVID-19 的可控反应
- 批准号:
2028036 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Practical Stability of Networked Control Systems under Uncertainty
不确定性下网络控制系统的实际稳定性
- 批准号:
1917177 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Small: Blind information measures for waves: a deterministic approach
CIF:小:波浪的盲信息测量:确定性方法
- 批准号:
1717942 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Student Travel Support for the North American School on Information Theory
CIF:北美信息论学校的学生旅行支持
- 批准号:
1547772 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS: Synergy: Triggered Control of Cyber Physical Systems with Communication Channels Constraints
CPS:协同:具有通信通道约束的信息物理系统的触发控制
- 批准号:
1446891 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Small: A wave-theoretic approach to information transport in scattering environments
CIF:小:散射环境中信息传输的波理论方法
- 批准号:
1423648 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Large Scale Networks and Information Flow: From Emergent Behavior to Algorithm Design
NeTS:小型:协作研究:大规模网络和信息流:从涌现行为到算法设计
- 批准号:
0916778 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Small: A Space Dimension Approach for Wireless Netowrk Information Theory
CIF:小:无线网络信息理论的空间维度方法
- 批准号:
0916465 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Wave diversity in wireless communication
无线通信中的波分集
- 批准号:
0635048 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
- 批准号:
2331096 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Novel Functional Devices Using Random Networks of Metal Nanoparticles
使用金属纳米颗粒随机网络的新型功能器件
- 批准号:
22KJ0046 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Graphical causal models for random networks
随机网络的图形因果模型
- 批准号:
EP/W015684/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Random structures from large networks and systems
大型网络和系统的随机结构
- 批准号:
RGPIN-2019-04173 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Random growth models, spin glasses and stability of complex networks
LEAPS-MPS:随机增长模型、自旋玻璃和复杂网络的稳定性
- 批准号:
2137614 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Random Matrix Limit Theorems for Deep Neural Networks
深度神经网络的随机矩阵极限定理
- 批准号:
RGPIN-2021-02533 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
- 批准号:
2054835 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Random structures from large networks and systems
大型网络和系统的随机结构
- 批准号:
RGPIN-2019-04173 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Random Matrix Limit Theorems for Deep Neural Networks
深度神经网络的随机矩阵极限定理
- 批准号:
DGECR-2021-00041 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Launch Supplement
Random Matrix Limit Theorems for Deep Neural Networks
深度神经网络的随机矩阵极限定理
- 批准号:
RGPIN-2021-02533 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual