CAREER: Foundations for Ubiquitous Image-Based Appearance Capture

职业:无处不在的基于图像的外观捕捉的基础

基本信息

  • 批准号:
    0546408
  • 负责人:
  • 金额:
    $ 45.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

CAREER: Foundations for Ubiquitous Image-based Appearance CapturePI: Todd ZicklerAbstract:For many applications, the nature of visual content is rapidly changing. Two-dimensional images are being replaced by higher-dimensional appearance models that summarize the (very large)set of images of an object for many viewpoints and lighting conditions. These models enable an object to be virtually rotated, re-lit and composited into other scenes, and they improve our ability to automate visual tasks such as detection, recognition, and tracking. Yet, despite the growing number of applications, suitable appearance models of common objects are remarkably hard to find. This is due largely to the complexity of appearance, which makes the task of appearance capture quite formidable. The goal of the proposed research is to develop a framework for appearance capture that can be applied to any opaque and non-refracting surface, and that is simultaneously accurate and practical. Ultimately, we seek to enable "ubiquitous appearance capture": the widespread ability to acquire appearance models outside of the laboratory - in homes, offices, museums, hospitals and in the field. To achieve this goal, we take a physics-based approach that seeks to exploit common reflectance properties (e.g., Helmholtz reciprocity, reflectance separability and compressibility) that we believe have yet to be fully utilized. The benefits of this approach are two-fold. First, it enables image-based acquisition of both shape and reflectance from a small number of uncalibrated cameras and light-sources, eliminating the need for laser range-scanners, projector-based structured lighting, or other specialized equipment. Second, it makes possible the modeling of a broad class of surfaces, including those with complex reflectance not necessarily well-represented by low-dimensional (i.e., parametric)models. This second property is essential for modeling real-world surfaces, and is very different from most existing image-basedapproaches that are predicated on restrictive assumptions about the nature of surface reflectance. This research activity is closely linked to an educational program that includes the development of courses in human and computer vision at both the undergraduate and graduate levels, and the creation of undergraduate and graduate research opportunities. The educational program extends beyond the university by making a mobile acquisition system available as a teaching tool in museums and classrooms in the Boston area, and by making appearance models and software available through the Internet.URL: http://www.eecs.harvard.edu/~zickler/research.html
职业生涯:基于图像的无处不在外观的基础捕获:Todd Zickler摘要:对于许多应用程序来说,视觉内容的性质正在迅速变化。二维图像正在被更高维的外观模型所取代,这些模型总结了对象在许多视点和照明条件下的(非常大的)图像集。这些模型使对象能够虚拟旋转、重新照明并合成到其他场景中,它们提高了我们自动执行检测、识别和跟踪等视觉任务的能力。然而,尽管应用程序越来越多,但常见物体的合适外观模型仍然非常难找到。这在很大程度上是由于外观的复杂性,这使得外观捕获的任务相当艰巨。这项研究的目标是开发一种外观捕捉框架,该框架可以应用于任何不透明和非折射的表面,同时又准确和实用。最终,我们寻求实现“无处不在的外观捕获”:在实验室之外--在家里、办公室、博物馆、医院和野外--获取外观模型的广泛能力。为了实现这一目标,我们采取了一种基于物理的方法,试图利用我们认为尚未充分利用的共同反射特性(例如,亥姆霍兹互易性、反射可分离性和可压缩性)。这种方法有两方面的好处。首先,它能够从少量未经校准的相机和光源获取基于图像的形状和反射率,从而消除对激光距离扫描仪、基于投影仪的结构化照明或其他专门设备的需要。其次,它使得对一大类曲面的建模成为可能,包括那些具有复杂反射率的曲面,这些曲面不一定能用低维(即参数)模型很好地表示。这第二个属性对于真实世界的曲面建模是必不可少的,它与大多数现有的基于图像的方法有很大的不同,这些方法是基于对曲面反射率性质的限制性假设。这项研究活动与一项教育计划密切相关,该计划包括在本科生和研究生水平上开发人类和计算机视觉课程,并创造本科生和研究生的研究机会。该教育计划的范围超出了大学的范围,在波士顿地区的博物馆和教室里提供了一个移动采集系统作为教学工具,并通过互联网提供外观模型和软件。网址:http://www.eecs.harvard.edu/~zickler/research.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Todd Zickler其他文献

The Geometry of Reflectance Symmetries
反射对称性的几何
Eclipse: Disambiguating Illumination and Materials using Unintended Shadows
Eclipse:使用意外阴影消除照明和材质的歧义
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dor Verbin;B. Mildenhall;Peter Hedman;J. Barron;Todd Zickler;Pratul P. Srinivasan
  • 通讯作者:
    Pratul P. Srinivasan
Trilateration Using Unlabeled Path or Loop Lengths
  • DOI:
    10.1007/s00454-023-00605-x
  • 发表时间:
    2023-11-25
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Ioannis Gkioulekas;Steven J. Gortler;Louis Theran;Todd Zickler
  • 通讯作者:
    Todd Zickler

Todd Zickler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Todd Zickler', 18)}}的其他基金

RI: Medium: End-to-end Computational Sensing
RI:中:端到端计算传感
  • 批准号:
    1900847
  • 财政年份:
    2019
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
RI: Small: Depth from Differential Defocus
RI:小:微分散焦的深度
  • 批准号:
    1718012
  • 财政年份:
    2017
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Structured Inference for Low-Level Vision
RI:小型:协作研究:低级视觉的结构化推理
  • 批准号:
    1618227
  • 财政年份:
    2016
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
RI: Large: Collaborative Research: Reconstructive recognition: Uniting statistical scene understanding and physics-based visual reasoning
RI:大型:协作研究:重建识别:结合统计场景理解和基于物理的视觉推理
  • 批准号:
    1212928
  • 财政年份:
    2012
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: Understanding Translucency: Physics, Perception, and Computation
CGV:媒介:协作研究:理解半透明性:物理、感知和计算
  • 批准号:
    1161564
  • 财政年份:
    2012
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
HCC: Large: Collaborative Research: Beyond Flat Images: Acquiring, Processing and Fabricating Visually Rich Material Appearance
HCC:大型:协作研究:超越平面图像:获取、处理和制造视觉丰富的材料外观
  • 批准号:
    1012454
  • 财政年份:
    2010
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research:Computer Vision and Online Communities: A Symbiosis
HCC:媒介:协作研究:计算机视觉和在线社区:共生
  • 批准号:
    0905243
  • 财政年份:
    2009
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Technological and Educational Foundations for Understanding and Improving Large-classroom Learning
合作研究:理解和改进大课堂学习的技术和教育基础
  • 批准号:
    0835338
  • 财政年份:
    2009
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
RI: Toward Shape from Specular Reflections under Real-world Illumination
RI:现实世界照明下镜面反射的形状
  • 批准号:
    0712956
  • 财政年份:
    2007
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
CRI: CRD: Public web-based photo-collections as a research testbed
CRI:CRD:公共网络照片集作为研究测试平台
  • 批准号:
    0708895
  • 财政年份:
    2007
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
Social Foundations of Cryptography
密码学的社会基础
  • 批准号:
    EP/X017524/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Social foundations of cryptography
密码学的社会基础
  • 批准号:
    EP/X016226/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
  • 批准号:
    MR/X023583/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了