CAREER: Towards a Self-Taught Vision System

职业生涯:迈向自学视觉系统

基本信息

  • 批准号:
    0546666
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-15 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

Title: CAREER: Towards a Self-Taught Vision SystemPI: Erik Learned-MillerAbstractUsing modern learning techniques, it is now possible to teach computers visual concepts through example-based learning. But this process is time consuming and arduous. Often large data sets must be manually collected. Machines typically do not take advantage of previously learned knowledge when performing new tasks. And when confronted with a new situation, systems fail catastrophically. The goal of this research is to make it dramatically easier to teach vision systems new skills, and to design machines that can learn tasks faster by leveraging previously learned knowledge. In short, the aim is to develop computer vision systems that are largely self-taught. More specifically, this research will focus on problems such as learning from a small number of examples; using previously learned knowledge to improve performance on novel tasks; learning properties of one object that can be used to make inferences about other objects; acquiring and organizing information autonomously; and leveraging interdisciplinary techniques to help relieve people from the burden of ``training'' computers.These capabilities are taken for granted in human beings, but represent serious shortcomings in today's computer systems. A central tenet of this work is that it is impractical to train vision systems one problem at a time, acquiring large training sets and developing training paradigms for each task to be learned. There are many scenarios in which training data are severely limited (there are limited photos of Abraham Lincoln). And ideally, computer systems should be adaptive, and not have to be prepared for each new task, especially when these new tasks are similar to previous ones. Some specific areas of investigation include learning to recognize any particular car or face from a single example, simply by watching other cars or faces as they move about; developing software for robots to continously explore the visual world and the interactions between vision and the other senses; and learning to recognize typewritten text in a font never seen before, without ANY training examples of that font. The common thread in these efforts is that they relieve the burden on the teacher of the computer. The final goal is to develop computers that can be taught simply and rapidly, and that can explore on their own.Educational initiatives will be developed in two areas. The first area is minority and low-income outreach, involving a group of students at an urban Massachusetts school. The second area involves curriculum development and curriculum guidance at the college and graduate levels at UMass, Amherst.Project web page: http://www.cs.umass.edu/~elm/CAREER
职务名称:职业:利用现代学习技术,现在可以通过基于示例的学习来教授计算机视觉概念。 但这一过程既费时又费力。通常,大型数据集必须手动收集。机器在执行新任务时通常不会利用先前学习的知识。当面对新的情况时,系统会灾难性地失败。 这项研究的目标是使视觉系统更容易教授新技能,并设计出能够利用以前学到的知识更快地学习任务的机器。简而言之,我们的目标是开发在很大程度上自学的计算机视觉系统。更具体地说,这项研究将集中在一些问题上,如从少量的例子中学习;使用以前学到的知识来提高新任务的性能;学习一个对象的属性,可以用来推断其他对象;自主获取和组织信息;以及利用跨学科技术帮助人们从“训练”计算机的负担中解脱出来。这些能力在人类身上被认为是理所当然的,但是在当今的计算机系统中代表了严重的缺陷。这项工作的一个核心原则是,一次训练一个问题的视觉系统是不切实际的,需要获得大量的训练集,并为每个要学习的任务开发训练范例。在许多场景中,训练数据非常有限(亚伯拉罕林肯的照片有限)。理想情况下,计算机系统应该是自适应的,不必为每个新任务做好准备,特别是当这些新任务与以前的任务相似时。 一些特定的研究领域包括学习从一个例子中识别任何特定的汽车或人脸,只需观察其他汽车或人脸移动;开发软件让机器人不断探索视觉世界以及视觉和其他感官之间的相互作用;学习识别以前从未见过的字体的打字文本,没有任何该字体的训练样本。 这些努力的共同点是,它们减轻了计算机教师的负担。最终目标是开发出既能简单快速地进行教学,又能自主探索的计算机。 第一个领域是少数族裔和低收入群体的外联活动,涉及马萨诸塞州一所城市学校的一群学生。 第二个领域涉及马萨诸塞大学阿默斯特分校的大学和研究生课程开发和课程指导。项目网页:http://www.cs.umass.edu/~elm/CAREER

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Learned-Miller其他文献

Erik Learned-Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Learned-Miller', 18)}}的其他基金

III: Small: Collaborative Research: Adaptive Integration of Textual and Geospatial Information for Mining Massive Map Collections
III:小型:协作研究:文本和地理空间信息的自适应集成以挖掘海量地图集
  • 批准号:
    1526431
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Small: Coordinating Language Modeling, Computer Vision, and Machine Learning for Dramatic Advances in Optical Character Recognition
RI:小型:协调语言建模、计算机视觉和机器学习,实现光学字符识别的巨大进步
  • 批准号:
    0916555
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Self perception, impairment, and disability. The shift towards disablement as a social problem and away from impairment
自我认知、损伤和残疾。
  • 批准号:
    2887554
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
A Heterocycle Vending Machine: Towards the autonomous and self-optimising synthesis of a heterocyclic screening collection of fragments and lead-like
杂环自动售货机:实现碎片和类先导杂环筛选集合的自主和自我优化合成
  • 批准号:
    2896336
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
CAREER: Towards Self-Sustainable Wearable Systems Design for Mobile Health Applications
职业:面向移动健康应用的自我可持续可穿戴系统设计
  • 批准号:
    2238257
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Self-Healing Polymers in Complex Water Matrices: Towards Smart Materials for the Environment
复杂水基质中的自修复聚合物:迈向环境智能材料
  • 批准号:
    2201361
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Towards an integrated, self-learning stochastic mining complex framework and new digital technologies for the sustainable development of mineral resources
为矿产资源的可持续发展建立一个集成的、自学习的随机采矿复杂框架和新的数字技术
  • 批准号:
    RGPIN-2021-02777
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
A step towards self-fertilizing plants - developing synthetic nitrogen-fixing organelles in yeast
迈向自花受精植物的一步——在酵母中开发合成固氮细胞器
  • 批准号:
    559908-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards Self-Manageable and Adaptive Cyber-Physical Systems for Manufacturing Automation
面向制造自动化的自我管理和自适应网络物理系统
  • 批准号:
    RGPIN-2018-03856
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Towards perceptive and self-aware robots
迈向有感知力和自我意识的机器人
  • 批准号:
    2780895
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Towards perceptive and self-aware robots
迈向有感知力和自我意识的机器人
  • 批准号:
    2742381
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
The Activated Motivation Toolkit: Towards Self-Determined Self-Improvement Technology
激活的动机工具包:迈向自我决定的自我改进技术
  • 批准号:
    RGPIN-2022-03268
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了