CAREER: Modeling and Analysis of Data from Massive Graphs

职业:海量图表数据的建模和分析

基本信息

项目摘要

This project defines a new approach to massive graphs that identifies three fundamental challenges common to many applications: scale, dynamism, and uncertainty. The project advances graph compression schemes that are universal and independent of the application to summarize massive graphs at large scales. These algorithms should be highly efficient, using a small amount of space and time to produce a compressed representation. Furthermore, these algorithms should be provably correct. In addition, the tools should be adapted to dynamic graph data. They should learn a model of the graph from historical data. Finally, this project will design tools that can infer graph properties from samples of a massive graph, since such a graph cannot be observed in its entirety. In applications where sampling schemes can be devised, we strive to do so as effectively and as efficiently as possible.brbrWe live in an information age. Behind many of our technological, scientific, and economic forces are large volumes of data. An increasingly important type of data is relational data or graph data. These data capture how entities are related to one another, how they interact with one another, or how objects are linked together. All forms of communication amongst entities give rise to graph data, including the communication of source and destination IP addresses via IP packets in the Internet, people sending email to one another, web pages referring to one another, or proteins interacting with one another in large biological systems. Many scientific, engineering, and medical applications depend on our abilities to model, to analyze, to process, and to synthesize this type of data quickly, in the face of changes to the data, and under imperfect information. Indeed, our security and the security of the Internet may hinge upon our understanding of how entities (be they people or IP addresses) interact with one another. Our current statistical and algorithmic tools for relational data are not adequate for massive graphs. They have not kept pace with our ability to collect enormous amounts of data and our need to accurately and efficiently analyze that data. We must be able to model, to compress, and to highlight the important features of graphs that are gigantic, that evolve over time (perhaps quickly), and that may capture a limited view of a larger graph. This project aims to develop robust, highly efficient, and provably correct methods for managing massive graphs.
该项目定义了一种新的大规模图形方法,确定了许多应用程序共同面临的三个基本挑战:规模,动态性和不确定性。 该项目提出了通用且独立于应用程序的图形压缩方案,以在大规模上总结大量图形。 这些算法应该是高效的,使用少量的空间和时间来产生压缩表示。 此外,这些算法应该是可证明正确的。 此外,这些工具应适应动态图形数据。 他们应该从历史数据中学习图形模型。 最后,该项目将设计可以从大规模图的样本中推断图属性的工具,因为这样的图无法完整地观察。 在可以设计采样方案的应用程序中,我们努力尽可能有效地设计采样方案。brbr我们生活在信息时代。 在我们许多技术、科学和经济力量的背后,是大量的数据。 越来越重要的数据类型是关系数据或图形数据。这些数据捕获实体如何相互关联,它们如何相互交互,或者对象如何链接在一起。 实体之间的所有形式的通信都会产生图形数据,包括通过互联网中的IP数据包进行的源IP地址和目的IP地址的通信,人们相互发送电子邮件,相互引用的网页或大型生物系统中相互作用的蛋白质。 许多科学、工程和医学应用都依赖于我们在面对数据变化和不完美信息的情况下快速建模、分析、处理和综合此类数据的能力。 事实上,我们的安全和互联网的安全可能取决于我们对实体(无论是人还是IP地址)如何相互作用的理解。 我们目前用于关系数据的统计和算法工具不足以处理海量图。 他们没有跟上我们收集大量数据的能力以及我们准确有效地分析这些数据的需求。 我们必须能够建模、压缩和突出那些巨大的、随着时间推移而演变(也许很快)的图的重要特征,这些特征可能会捕捉到一个更大图的有限视图。 该项目旨在开发强大,高效,可证明正确的方法来管理大量图形。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Gilbert其他文献

Prologue to Sparsity Issue
  • DOI:
    10.1007/s00041-008-9055-8
  • 发表时间:
    2008-11-18
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Albert Cohen;Ronald A. DeVore;Michael Elad;Anna Gilbert
  • 通讯作者:
    Anna Gilbert
The influence of heavy physical effort on proteolytic adaptations in skeletal and heart muscle and aorta in rats.
重体力劳动对大鼠骨骼、心肌和主动脉蛋白水解适应的影响。
Theoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis
  • DOI:
    10.1016/j.jcp.2005.06.005
  • 发表时间:
    2006-01-20
  • 期刊:
  • 影响因子:
  • 作者:
    Jing Zou;Anna Gilbert;Martin Strauss;Ingrid Daubechies
  • 通讯作者:
    Ingrid Daubechies

Anna Gilbert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Gilbert', 18)}}的其他基金

AF: Medium: Collaborative Research: Sparse Approximation: Theory and Extensions
AF:媒介:协作研究:稀疏逼近:理论与扩展
  • 批准号:
    1161233
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
  • 批准号:
    0540154
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research in Algorithms for Sparse Data Representation
FRG:稀疏数据表示算法的合作研究
  • 批准号:
    0354600
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Multi-Timescale Dynamics Modeling, Simulation, and Analysis of Converter-Dominated Power Systems
职业:以转换器为主导的电力系统的多时间尺度动态建模、仿真和分析
  • 批准号:
    2339148
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Modeling, Optimization, and Equilibrium Formulations for the Analysis and Design of Circular Economy Networks
职业:循环经济网络分析和设计的建模、优化和平衡公式
  • 批准号:
    2339068
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Towards Data-Driven and Field-Validated Microgrid Modeling and Analysis Techniques
职业:迈向数据驱动和现场验证的微电网建模和分析技术
  • 批准号:
    2237886
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A Multiphysics Framework for Modeling, Analysis, and Experimentation of Power Systems and Power Electronics
职业:电力系统和电力电子建模、分析和实验的多物理场框架
  • 批准号:
    2314415
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A Multiphysics Framework for Modeling, Analysis, and Experimentation of Power Systems and Power Electronics
职业:电力系统和电力电子建模、分析和实验的多物理场框架
  • 批准号:
    2143222
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Latent Variable Statistical Modeling for the Analysis of Big and Complex Longitudinal Data to Promote Personalized Learning
职业:推进潜变量统计模型分析大而复杂的纵向数据以促进个性化学习
  • 批准号:
    1848451
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Real-World Networks: Modeling and Analysis of Signed Networks with Positive and Negative Links
职业:现实世界网络:具有正向和负向链接的签名网络的建模和分析
  • 批准号:
    1845081
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A Scalable Optimization-Based Framework for Modeling and Analysis of Cascading Failures
职业生涯:基于优化的可扩展框架,用于级联故障建模和分析
  • 批准号:
    1750531
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Virus Infection and Immune Responses: Modeling, Analysis, and Implications
职业:病毒感染和免疫反应:建模、分析和影响
  • 批准号:
    1758290
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: The restricted nonlinear framework: A new paradigm for modeling, analysis and control of wall-bounded turbulent flows
职业:受限非线性框架:壁面湍流建模、分析和控制的新范式
  • 批准号:
    1652244
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了