Collaborative Research: Freshwater and Saltwater Fluxes Through Coastal Aquifers: Multiple Time Scales of Terrestrial and Oceanic Forcing
合作研究:通过沿海含水层的淡水和咸水通量:陆地和海洋强迫的多个时间尺度
基本信息
- 批准号:0548691
- 负责人:
- 金额:$ 11.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0548691Mullingan.Field studies have shown that seawater circulation through coastal aquifers may exceedfresh groundwater discharge into coastal waters. This observation has potentiallyimportant implications for the quantity and timing of nutrient transport into the coastalocean, as well as for inland groundwater fluxes. However, the physical mechanismsdriving this saline groundwater circulation are poorly understood, and, in fact, little salineinflow has been found to balance the observed discharge. We hypothesize thatseawater exchange is often driven by seasonal oscillations in inland recharge. Becauseof the density difference between seawater and freshwater, the freshwater-saltwaterinterface can potentially move by as much as forty times the seasonal movement of thewater table, driving large quantities of saline groundwater exchange. However, fewdirect measurements of flux across the sediment interface have been taken during thehypothesized winter saline inflow period, and the actual magnitude of this seasonal fluxand its influence on estuarine nutrient cycles is unknown. Other mechanisms of salinecirculation include tidal pumping, saline entrainment in freshwater discharge, and waverun-up on the beach. These processes enhance mixing at the interface and maydominate seawater circulation in some regions. It is unknown how dispersive processesinteract with seasonal cycles, or how the relative magnitude of seasonal exchange anddispersive circulation may depend on aquifer properties, coastal processes, or rechargepatterns. We will address the following questions: (1) How do saline groundwatercirculation and freshwater discharge respond to combined forcing from processes thatoccur over different time-scales such as inland recharge and tides? (2) How do theseprocesses affect nutrient delivery to coastal waters? To answer these questions, we willcombine high-frequency measurements of submarine discharge and inflow with detailednumerical simulation of the density-coupled transient coastal groundwater system.Measurements will rely on a network of flux stations connected by wireless links; verticalhydraulic gradients will be measured automatically and relayed to shore. We willcombine detailed field measurements of water and chemical fluxes with simulationmodels of groundwater flow to develop an understanding of the processes that driveseawater exchange and groundwater flow in coastal aquifers.Accurate physically based models of water exchange between aquifers and coastalwaters could help solve a variety of problems that exist at the interface of hydrology andcoastal oceanography. First, seawater circulation through coastal aquifers impactsinland freshwater systems by changing the store of fresh groundwater, potentiallymodulating seasonal water table cycles, and affecting saltwater intrusion and up-coningin regions where groundwater resources are overdrawn. Flux across the shoreline is asignificant source of uncertainty in coastal hydrologic water budgets and groundwatermodels. Second, seawater circulation affects coastal waters by transporting chemicalsinto and out of the ocean. For example, excess nutrient inputs can adversely affectfisheries through eutrophication caused by excessive algal growth. The dynamics of freshwater-saltwater interactions in coastal aquifers control the timing of these solute fluxes to coastal waters. The spatial patterns and dynamics of saline water cirulation may drive important biogeochemical reactions within coastal aquifers.
实地研究表明,通过沿海含水层的海水循环可能超过向沿海水域排放的淡水。这一观察结果对营养物质向沿海海洋输送的数量和时间以及内陆地下水通量具有潜在的重要影响。然而,人们对驱动这种咸水地下水循环的物理机制知之甚少,事实上,几乎没有发现有盐水流入来平衡观测到的流量。我们假设,海水交换通常是由内陆补给的季节性振荡驱动的。由于海水和淡水之间的密度差异,淡水-咸水界面的移动可能是地下水位季节性移动的40倍,从而驱动大量的咸水地下水交换。然而,在假设的冬季盐分流入期间,很少有直接测量穿过沉积物界面的通量,而且这种季节性通量的实际大小及其对河口营养循环的影响尚不清楚。盐分循环的其他机制包括潮汐抽水、淡水排放中的咸水夹带和海滩上的波浪上浮。这些过程增强了界面上的混合,并可能主导某些地区的海水循环。目前尚不清楚弥散过程如何与季节循环相互作用,也不清楚季节交换和弥散循环的相对大小如何取决于含水层性质、沿海过程或补给类型。我们将解决以下问题:(1)咸水循环和淡水排放如何响应不同时间尺度上发生的过程(如内陆补给和潮汐)的联合强迫?(2)这些过程如何影响营养物质向沿海水域的输送?为了回答这些问题,我们将把海底流量和流入的高频测量与密度耦合的沿海地下水系统的详细数值模拟相结合。测量将依赖于通过无线链路连接的通量站网络;垂直水力梯度将被自动测量并传递到岸上。我们将把详细的水和化学通量的现场测量与地下水流动的模拟模型结合起来,以加深对沿海含水层水交换和地下水流动过程的了解。准确的含水层和海岸水域之间的水交换模型可以帮助解决水文学和沿海海洋学界面上存在的各种问题。首先,通过沿海含水层的海水循环改变了淡水地下水的储存,潜在地调节了季节性地下水位循环,并影响了地下水资源超采地区的咸水入侵和上升锥体,从而影响了陆地淡水系统。穿过海岸线的流量是沿海水文水量平衡和地下水模型中不确定性的一个重要来源。其次,海水循环通过将化学物质运入和运出海洋来影响沿海水域。例如,过量的营养投入可能会通过藻类过度生长造成的富营养化对渔业产生不利影响。沿海含水层中淡水-咸水相互作用的动态控制着这些溶质流向沿海水域的时间。咸水循环的空间模式和动态可能推动沿海含水层内重要的生物地球化学反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ann Mulligan其他文献
Ann Mulligan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325895 - 财政年份:2024
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325892 - 财政年份:2024
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325891 - 财政年份:2024
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325893 - 财政年份:2024
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Quantifying the response of biodiverse freshwater ecosystems to abrupt and progressive environmental change
合作研究:BoCP-实施:量化生物多样性淡水生态系统对突然和渐进的环境变化的响应
- 批准号:
2325894 - 财政年份:2024
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: MRA: On thin ice- implications of shorter winters for the future of freshwater phytoplankton phenology and function
合作研究:MRA:薄冰——较短冬季对淡水浮游植物物候和功能未来的影响
- 批准号:
2306896 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Continuing Grant
Collaborative Research: A new pathway of Indonesian Throughflow in the Indian Ocean: Mechanisms and role in transporting the excess heat and freshwater of the recent hiatus decade
合作研究:印度洋印度尼西亚通流的新途径:近十年间的过剩热量和淡水输送机制和作用
- 批准号:
2242195 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: A new pathway of Indonesian Throughflow in the Indian Ocean: Mechanisms and role in transporting the excess heat and freshwater of the recent hiatus decade
合作研究:印度洋印度尼西亚通流的新途径:近十年间的过剩热量和淡水输送机制和作用
- 批准号:
2242194 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
- 批准号:
2312326 - 财政年份:2023
- 资助金额:
$ 11.38万 - 项目类别:
Continuing Grant