Branched Polymers: Dynamics and Transport Mechanisms

支化聚合物:动力学和传输机制

基本信息

  • 批准号:
    0551185
  • 负责人:
  • 金额:
    $ 34.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY Fundamental studies of stress relaxation dynamics of model branched polymer liquids (i.e. polymers with precisely controlled molecular architectures, well-characterized segmental microstructures, and narrow molecular weight distributions), have long been recognized as instrumental for understanding how molecular topology affects transport properties and processing flow behavior of synthetic polymers. The objective of the proposed research is three-fold. First, to quantify the effect of architecture on diffusion, stress relaxation, and near-surface composition profile of single-component branched polymers and their blends with linear chains. Second, to determine how topology of charged analytes influence their electrophoretic properties in polymer gels and solutions. Finally, to understand how molecular architecture affects nonlinear rheological behavior of polymers in transient shear and extensional flows. The proposed research employs anionic techniques and DNA self-assembly to synthesize model symmetric star and asymmetric H-shaped polymer structures. Rutherford backscattering spectroscopy (RBS) is used in conjunction with mechanical rheometry to quantify the effect of arm length and arm length asymmetry on the self-diffusion coefficient and viscoelastic properties (linear and non-linear) of branched molecules. These measurements are important because they simultaneously allow the dynamic dilution ansatz to be tested and reveal the fundamental processes that govern branch-point diffusion in quiescent and highly deformed polymer liquids. RBS will also be used in conjunction with secondary ion mass spectrometry (SIMS) to quantify the composition profile of branched/linear additives in polymer hosts. Results from these experiments will be compared with predictions from self-consistent field simulations and a recently proposed response theory to determine how/why additives migrate in polymers. Implications of such migration for polymer surface functionalization and plasticizer design will be explored in detail. Branched DNA synthesized by self-assembly will be used to visualize, quantify, and model electrophoresis of polyelectrolytes with complex topologies in polymer gels and entangled solutions. NON-TECHNICAL SUMMARYAnnual production of polyolefins with multiple long side branches per molecule exceeds 20 billion pounds in the United States alone. These polymers are inexpensively synthesized, but the best procedures for shaping them into useful articles (e.g. interior panels for automobiles, grocery sacks, and beverage containers) are rarely obvious. The complexity comes from a lack of fundamental understanding of how side branches affect polymer flow properties, and how these properties in-turn affect processing. As a result, months of expensive trial-and-error experimentation are often required to modify existing polymer processing equipment to accommodate polymers with even small amounts of long side branches. The research proposed seeks to synthesize ideal branched polymers with well-defined molecular topologies using anionic synthesis and DNA self-assembly. Branched polymers in the first group will be used in this project to investigate the effect of molecular architecture on flow properties. Branched molecules created by DNA self-assembly will be used to visualize molecular motions and to devise new, efficient methods for sequencing DNA. In addition to its direct impact on science and technology of polymer processing, the proposed study is expected to impact education in at least three ways. First, the proposed visualization experiments using DNA will provide an important visual component and/or demonstration tool for teaching polymer physics to students at all levels. Second, the team of graduate and undergraduate students who will execute the study will receive comprehensive education in a unique combination of subjects: polymer physics, synthetic chemistry, fluid dynamics, polymer processing, optics and spectroscopy, molecular biology, and molecular theory. Finally, the PI and his students will disseminate knowledge created in the project to students and local industry via an outreach program for K-12 students, science teachers in Ithaca, and local industry. This program, administered through Cornell Center for Materials Research, provides unique opportunities for influencing how young students learn science and how local companies take advantage university research for enhancing their competitiveness.
技术综述支化聚合物液体模型的应力松弛动力学基础研究(即具有精确控制的分子结构、良好表征的链段微结构和窄的分子量分布的聚合物)长期以来被认为是理解分子拓扑结构如何影响合成聚合物的传输特性和加工流动行为的工具。这项拟议研究的目标有三个。首先,量化结构对单组分支化聚合物及其直链共混物的扩散、应力松弛和近表面组成分布的影响。第二,确定带电分析物的拓扑结构如何影响其在聚合物凝胶和溶液中的电泳性。最后,了解分子结构如何影响聚合物在瞬时剪切和拉伸流动中的非线性流变行为。该研究利用阴离子技术和DNA自组装技术合成了模型对称的星形和不对称的H型聚合物结构。卢瑟福背散射光谱(RBS)与机械流变学相结合,用来量化支链分子的自扩散系数和粘弹性性质(线性和非线性)的影响。这些测量很重要,因为它们同时允许测试动态稀释度ansatz,并揭示了控制静态和高度变形的聚合物液体中分支点扩散的基本过程。RBS还将与二次离子质谱仪(SIMS)结合使用,以量化聚合物主体中支化/线性添加剂的组成分布。这些实验的结果将与自洽场模拟的预测和最近提出的响应理论进行比较,以确定添加剂如何/为什么在聚合物中迁移。我们将详细探讨这种迁移对聚合物表面功能化和增塑剂设计的影响。通过自组装合成的支化DNA将用于在聚合物凝胶和纠缠溶液中可视化、量化和模拟具有复杂拓扑结构的聚电解质的电泳图。非技术总和每个分子具有多个长侧支链的聚烯烃的年产量仅在美国就超过200亿磅。这些聚合物的合成成本很低,但将其成型为有用物品(例如汽车、食品杂货袋和饮料容器的内饰)的最佳工艺很少明显。这种复杂性来自于对侧链如何影响聚合物流动性质以及这些性质如何反过来影响加工缺乏基本了解。因此,通常需要花费数月的时间进行昂贵的反复试验,以改造现有的聚合物加工设备,以适应即使是少量长侧支链的聚合物。这项研究旨在通过阴离子合成和DNA自组装来合成具有明确分子拓扑结构的理想支化聚合物。第一组中的支化聚合物将在本项目中用于研究分子结构对流动特性的影响。DNA自组装产生的分支分子将被用来可视化分子运动,并设计出新的、有效的DNA测序方法。除了对聚合物加工科学和技术的直接影响外,这项拟议的研究预计还将在至少三个方面影响教育。首先,拟议的使用DNA的可视化实验将为向所有级别的学生教授聚合物物理提供重要的可视组件和/或演示工具。其次,将进行这项研究的研究生和本科生团队将接受独特的学科组合的综合教育:聚合物物理、合成化学、流体力学、聚合物加工、光学和光谱学、分子生物学和分子理论。最后,PI和他的学生将通过面向K-12学生、伊萨卡的科学教师和当地行业的外展计划,将项目中创造的知识传播给学生和当地行业。该项目由康奈尔材料研究中心管理,为影响年轻学生学习科学的方式以及当地公司如何利用大学研究提高竞争力提供了独特的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lynden Archer其他文献

Lynden Archer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lynden Archer', 18)}}的其他基金

NSF I-Corps Hub (Track 1): Interior Northeast Region
NSF I-Corps 中心(轨道 1):东北内陆地区
  • 批准号:
    2229430
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Cooperative Agreement
PFI-TT: Polymer coatings for High-Energy Lithium Batteries
PFI-TT:高能锂电池聚合物涂层
  • 批准号:
    1919013
  • 财政年份:
    2019
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
I-Corps Node: Upstate NY Alliance for Entrepreneurial Innovation
I-Corps 节点:纽约州北部创业创新联盟
  • 批准号:
    1643287
  • 财政年份:
    2016
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Cooperative Agreement
Nanoscale Organic Hybrid Materials (NOHMs)
纳米级有机杂化材料(NOHM)
  • 批准号:
    1609125
  • 财政年份:
    2016
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
UNS:Relaxation Dynamics of Particles and Polymers in Soft Glassy Suspensions
UNS:软玻璃态悬浮液中颗粒和聚合物的松弛动力学
  • 批准号:
    1512297
  • 财政年份:
    2015
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
PFI:BIC Development of Hybrid Cathodes and Separators for High-energy and High-power Lithium-Sulfur Secondary Batteries
PFI:BIC高能高功率锂硫二次电池混合正极和隔膜的开发
  • 批准号:
    1237622
  • 财政年份:
    2012
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Nanoscale Organic Hybrid Materials (NOHMs)
纳米级有机杂化材料(NOHM)
  • 批准号:
    1006323
  • 财政年份:
    2010
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER Proposal on Non-Homogeneous Flow Fields in Nonlinear Rheology: A Challenge to Current Paradigms?
合作研究:关于非线性流变学中非均匀流场的迫切建议:对当前范式的挑战?
  • 批准号:
    0934600
  • 财政年份:
    2009
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Nanoparticle ionic fluids: interactions and transport properties
纳米粒子离子液体:相互作用和传输特性
  • 批准号:
    0756516
  • 财政年份:
    2008
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Boundary Lubrication and Surface Dynamics
边界润滑和表面动力学
  • 批准号:
    0510239
  • 财政年份:
    2005
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant

相似海外基金

Elucidation of photo-relaxation dynamics and photophysical properties of cupper(I) multinuclear coordination polymers with thermally activated delayed fluorescence
热激活延迟荧光阐明铜(I)多核配位聚合物的光弛豫动力学和光物理性质
  • 批准号:
    23K04765
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial gradients in dynamics of near-interface polymers: Experiments and theory
近界面聚合物动力学的空间梯度:实验和理论
  • 批准号:
    2211573
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
  • 批准号:
    RGPIN-2018-05444
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Coarse-Grained Molecular Model for Predicting Dynamics of Entangled Associating Polymers
开发用于预测缠结缔合聚合物动力学的粗粒分子模型
  • 批准号:
    21K13893
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probing Chain Dynamics of Polymers in Polar Solvents
极性溶剂中聚合物链动力学的探测
  • 批准号:
    566059-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
  • 批准号:
    RGPIN-2018-05444
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Dynamics of Associative Polymers and Its Experimental Validation: Effect of Dissociation Equilibrium on Entanglement Relaxation Modes
缔合聚合物的分子动力学及其实验验证:解离平衡对缠结弛豫模式的影响
  • 批准号:
    21H01986
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-equilibrium structure and dynamics of ring polymers under flow
流动下环聚合物的非平衡结构和动力学
  • 批准号:
    21K14682
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental study of the conformation and dynamics of active colloidal polymers
活性胶体聚合物构象与动力学的实验研究
  • 批准号:
    2028652
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
  • 批准号:
    RGPIN-2018-05444
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了