REU Site: Undergraduate Research in Mathematical Sciences and its Applications

REU 网站:数学科学及其应用的本科生研究

基本信息

  • 批准号:
    0552610
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

The Mathematics and Statistics Departments at Texas A&M will run an Undergraduate Research in Mathematical Sciences and its Applications Research Experiences for Undergraduates (REU) site with60 undergraduate participants from colleges and universities around the country.At least three parallel summer programs are planned. The first program involves the theory and applicationsof wavelets. Student participants will have the option to investigate theoretical topics, such as refinable functions and finite frames, or applied topics, such as data compression and filtering. Our second program involves mathematical ecology. Student participants will investigate migratory patterns of competing species with emphasis given to mathematical models that take into account topographical features, such as elevation. Both deterministic models and non-deterministic models (i.e. stochastic) will be investigated. The third area involves computational algebra and algebraic geometry (e.g. fast algorithms for solving polynomial systems)with applications to such areas as mathematical biology (e.g. protein folding) and computer graphics.Participants will be US citizens or permanent residents who are chosen on merit. Special considerationwill be given to participants coming from schools where research opportunities are limited. Women and members of underrepresented groups will be encouraged to apply. Details on the application procedureand on past REU programs at Texas A&M are available at the following web site:http://www.math.tamu.edu/research/undergrad/REU/Participants will work on projects either individually or in small groups with oversight and mentoring provided by the faculty organizers: Professors Jay Walton (co-PI in Math), Dave Larson (Math), Paulo Lima-Filho (Math), Maurice Rojas (Math), Henry Schenck (Math) and Tom Wehrly (in Statistics)and with help from postdoctorates and graduate students. At the end of the program, participants will present their results to the entire REU session in a locally held conference. Participants will also be encouraged to present their results at national conferences (e.g. Math Fest, AMS/MAA meetings) as well as to publishtheir results in professional journals.The funds from the National Science Foundation will be used to pay stipends, living and travel expenses toundergraduate participants. NSF funds will also be used to pay participants to travel to conferences to present their results.
德克萨斯农工大学的数学和统计系将开设一个面向本科生的数学科学及其应用研究经验(REU)网站,有来自全国各地高校的60名本科生参加。该校计划至少开展三个平行的暑期项目。第一个课程涉及到小波的理论和应用。学生参与者将可以选择研究理论主题,如可细化函数和有限框架,或应用主题,如数据压缩和过滤。我们的第二个项目涉及数学生态学。学生将研究竞争物种的迁徙模式,重点是考虑地形特征的数学模型,如海拔高度。既要研究确定性模型,也要研究非确定性模型(即随机模型)。第三个领域涉及计算代数和代数几何(例如,求解多项式系统的快速算法),应用到数学生物学(例如蛋白质折叠)和计算机图形学等领域。参与者将是按能力选择的美国公民或永久居民。我们会特别考虑来自研究机会有限的学校的参赛者。将鼓励妇女和代表性不足群体的成员提出申请。有关申请程序和德克萨斯农工大学过去的REU项目的详细信息,请访问以下网站:site:http://www.math.tamu.edu/research/undergrad/REU/Participants将在教师组织者的监督和指导下,单独或以小组形式开展项目:Jay Walton教授(数学联合PI)、Dave Larson(数学)、Paulo Lima-Filho(数学)、Maurice Rojas(数学)、Henry Schenck(数学)和Tom Wehrly(统计学)。在计划结束时,参与者将在当地举行的会议上向整个REU会议展示他们的成果。还将鼓励参与者在国家会议(如数学节、AMS/MAA会议)上展示他们的结果,并在专业期刊上发表他们的结果。来自国家科学基金会的资金将用于支付研究生参与者的津贴、生活费和旅费。NSF的资金还将用于支付与会者前往会议展示他们的成果的费用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Albert Boggess其他文献

Kernels for the tangential cauchy-riemann equations
切向柯西-黎曼方程的核
Fundamental Solutions to □ b on Certain Quadrics
  • DOI:
    10.1007/s12220-012-9303-7
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Albert Boggess;Andrew Raich
  • 通讯作者:
    Andrew Raich
The Fundamental Solution to $$\Box _b$$ on Quadric Manifolds: Part 3. Asymptotics for a Codimension 2 Case in $${\mathbb {C}}^4$$
  • DOI:
    10.1007/s12220-021-00693-2
  • 发表时间:
    2021-05-26
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Albert Boggess;Andrew Raich
  • 通讯作者:
    Andrew Raich

Albert Boggess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Albert Boggess', 18)}}的其他基金

Workshop to Advise NSF on Proposed Program for Undergraduate Recruitment into Mathematics and Science
就数学和科学本科生招募拟议计划向 NSF 提供建议的研讨会
  • 批准号:
    0832230
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Analytical and Statistical Methods in the Mathematical Sciences
REU 网站:数学科学中的分析和统计方法
  • 批准号:
    0243822
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Algebraic and Analytic Methods in the Mathematical Sciences
数学科学中的代数和分析方法
  • 批准号:
    9912192
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
VIGRE: Department-Wide Infrastructure: Widening the Pipeline for Mathematical Sciences
VIGRE:全系基础设施:拓宽数学科学的渠道
  • 批准号:
    9977354
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Leviforms and CR Extension
数学科学:Leviforms 和 CR 扩展
  • 批准号:
    8700998
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Leviforms, CR Extension, and the Tangential Cauchy Riemann Equations
数学科学:Leviforms、CR 扩展和切向柯西黎曼方程
  • 批准号:
    8301369
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
  • 批准号:
    2349255
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: Summer Undergraduate Research in Genetics and Genomics (SURGe)
REU 网站:遗传学和基因组学暑期本科生研究 (SURGe)
  • 批准号:
    2349410
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: Enhancing Undergraduate Experiences in Data and Mobile Cloud Security
REU 网站:增强本科生在数据和移动云安全方面的经验
  • 批准号:
    2349233
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Mathematical Science Research at James Madison University
REU 网站:詹姆斯麦迪逊大学本科生数学科学研究
  • 批准号:
    2349593
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Robotics Research for Rural Appalachia
REU 网站:阿巴拉契亚农村地区本科生机器人研究
  • 批准号:
    2348288
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Summer Undergraduate Research in Chemistry and Biochemistry at Miami University
REU 网站:迈阿密大学化学与生物化学暑期本科生研究
  • 批准号:
    2349468
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: Summer Undergraduate Research Focus (SURF): Anthropogenic Impacts on Coastal and Marine Systems
REU 网站:暑期本科生研究重点 (SURF):人为对沿海和海洋系统的影响
  • 批准号:
    2349151
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: Undergraduate Research Addressing Global Challenges
REU 网站:应对全球挑战的本科生研究
  • 批准号:
    2349246
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Computer Research in Cybersecurity and AI (UnCoRe-CyberAI)
REU 网站:网络安全和人工智能本科计算机研究 (UnCoRe-Cyber​​AI)
  • 批准号:
    2349663
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了