Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
基本信息
- 批准号:0554280
- 负责人:
- 金额:$ 22.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses the geometry of spaces of rational curveson smooth projective varieties, with a view toward understanding thestructure of rational points for varieties defined over functionfields. Consider a rationally-connected variety: Which homologyclasses contain free rational curves? Very free rational curves? Isthe space of such curves connected? Irreducible? Rationallyconnected? Of general type? Is there a workable notion of `rationalsimple connectedness' and is this a birational property? How can wedistinguish unirational varieties as a subclass of rationally-connectedvarieties? These questions are related to fundamental problems in Diophantinegeometry over function fields: Does a rationally-connected varietyover C(t) satisfy weak approximation? Can the hypothesis of the Tsen/LangTheorem over C(s,t) be formulated geometrically? For rationally-connectedvarieties over C(s,t), to what extent do cohomological obstructionsgovern the existence of rational points?This award will support research on systems of polynomialequations with coefficents varying in parameters. Our goal is tosolve these equations with rational functions that depend on theseparameters. The case of a single equation (or of several independentequations) was addressed in the mid 20th century; the feasibilityof finding a solution depends on the degree of the equation, the numberof free variables, and the number of varying parameters. Recently,a comprehensive geometric approach was developed when there is justone varying parameter. However, for multiple (not necessarilyindependent) equations in two varying parameters much remains to beunderstood. This work will also have broader impacts on the education ofgraduate students and postdoctoral fellows, the development of web-basedcollaboration tools, and the promotion of robust academic networkslinking universities across the country.
这个项目解决了光滑射影簇上的有理曲线空间的几何学,目的是理解定义在函数域上的簇的有理点的结构。 考虑一个有理连通的变种:哪些同源类包含自由有理曲线? 非常自由的有理曲线?这些曲线的空间是连通的吗? 不可简化? 有血缘关系? 普通类型的? 是否存在一个可行的“理性简单连通性”的概念,这是一个双理性性质吗? 我们如何区分单有理簇是有理连通簇的一个子类? 这些问题涉及到函数域上丢番图几何的基本问题:C(t)上的有理连通簇是否满足弱逼近? C(s,t)上的Tsen/LangTheorem的假设能用几何公式表示吗? 对于C(s,t)上的有理连通簇,上同调障碍在多大程度上决定了有理点的存在?该奖项将支持对系数随参数变化的多项式方程组的研究。 我们的目标是用依赖于这些参数的有理函数来解这些方程。 单个方程(或多个独立方程)的情况在世纪中期得到了解决;找到解的可行性取决于方程的阶数、自由变量的数量和变化参数的数量。 近年来,当只有一个变参数时,发展了一种综合的几何方法。 然而,对于具有两个不同参数的多个(不一定独立)方程,还有很多问题有待理解。 这项工作还将对研究生和博士后研究员的教育、基于网络的协作工具的开发以及促进连接全国各大学的强大学术网络产生更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuri Tschinkel其他文献
Homomorphisms of multiplicative groups of fields preserving algebraic dependence
- DOI:
10.1007/s40879-018-00312-5 - 发表时间:
2019-01-07 - 期刊:
- 影响因子:0.500
- 作者:
Fedor A. Bogomolov;Marat Rovinsky;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Reconstruction of Function Fields
- DOI:
10.1007/s00039-008-0665-8 - 发表时间:
2008-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Fedor Bogomolov;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Fonctions ZÊta Des Hauteurs Des Espaces Fibrés
纤维空间高级功能
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Antoine Chambert;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Бирациональные типы алгебраических орбифолдов
Бирациональные типы алгебраических орбифолдов
- DOI:
10.4213/sm9386 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Эндрю Креш;Andrew Kresch;Юрий Чинкель;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Simple Examples of Symplectic Four-manifolds with Exotic Properties
- DOI:
10.1023/a:1022372407184 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Fedor Bogomolov;Yuri Tschinkel - 通讯作者:
Yuri Tschinkel
Yuri Tschinkel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuri Tschinkel', 18)}}的其他基金
Rationality and Stable Rationality of Algebraic Varieties
代数簇的有理性和稳定有理性
- 批准号:
2000099 - 财政年份:2020
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
Birational Geometry and Rational Points
双有理几何和有理点
- 批准号:
1601912 - 财政年份:2016
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Spaces of rational curves and diophantine geometry
有理曲线空间和丢番图几何
- 批准号:
1160859 - 财政年份:2012
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
- 批准号:
0968318 - 财政年份:2010
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
Rational Points & Rational Curves on Algebraic Varieties
理性点
- 批准号:
0901777 - 财政年份:2009
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: EMSW21-RTG: JOINT COLUMBIA-CUNY-NYU RESEARCH TRAINING GROUP IN NUMBER THEORY
合作研究:EMSW21-RTG:哥伦比亚大学-纽约市立大学-纽约大学联合数论研究培训小组
- 批准号:
0739380 - 财政年份:2008
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
Arithmetic and Geometry of Algebraic Varieties
代数簇的算术和几何
- 批准号:
0100277 - 财政年份:2001
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant