FRG: Collaborative Research: Understanding Low-Volume Hyperbolic 3-Manifolds

FRG:协作研究:了解小体积双曲 3 流形

基本信息

  • 批准号:
    0554624
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this Focused Research Group is to prove the following Complexity Conjecture: that the complete low-volume hyperbolic 3-manifolds can be obtained by filling cusped hyperbolic 3-manifolds of small topological complexity. In particular, our goal is to find the low-volume closed and cusped manifolds and to explain the success of the SnapPea census in determining the low-volume manifolds. Up to the mid 1990's the best lower bounds for volume of closed orientable hyperbolic 3-manifolds appeared to be approximately 1/1000 of the likely lowest volume. Then the paper "Homotopy Hyperbolic 3-Manifolds Are Hyperbolic" improved the low-volume bounds by a factor of one hundred. Subsequently, many authors have used this result to achieve further improvements in the lower bound estimate. Now, the PI's believe they have developed a fundamental new tool (the MOM technology) which will not only find the low-volume closed and cusped hyperbolic 3-manifolds, but also explain in sharp detail why the Complexity Conjecture is correct. Our method is a satisfying mix of elementary hyperbolic geometry, 3-manifold topology, Morse Theory, and rigorous computer analysis. The implementation of our approach will involve mathematicians with expertise in different core areas of math, and with a sound knowledge of the other areas utilized in our methodology. 180 years ago, W. Bolyai, C. F. Gauss, and N. Lobachevsky started a revolution in scientific thought by creating an alternative geometry to Euclidean geometry. This non Euclidean geometry, called hyperbolic geometry, has proven to be a remarkable tool in mathematics. For example, the work of W. Thurston in the 1970's and 1980's showed that the vast majority of 3-dimensional spaces (3-manifolds) possessed geometric structures modeled on hyperbolic geometry, and that this geometric structure could be used to answer fundamental questions about the underlying 3-dimensional manifold. In fact, hyperbolic 3-manifolds have been the subject of intense scrutiny these last 40 years with striking results achieved; most recently, the proofs of the Ending Lamination and Tameness Conjectures, by Y. Minsky et al. Despite these advances and the possible spectacular resolution of the Geometrization Conjecture by G. Perelman, one of the most basic elements of the theory remains to be understood. In particular, the most natural tool for analyzing a hyperbolic 3-manifold is to use the geometry to measure its size, i.e., to compute its volume, but the behavior of the volume function remains mysterious: Thurston proved that there is a least volume hyperbolic 3-manifold, and a next lowest volume, and a next lowest, and so on, but despite 25 years of effort, none of the 3-manifolds possessing these low volumes have been conclusively identified. This proposal introduces a startling new technique--the MOM Technology--that the PIs plan to develop to find all these low-volume manifolds and to explain what properties low-volume hyperbolic manifolds must have.
这个专题研究小组的目标是证明以下复杂性猜想:完全的低容量双曲三维流形可以通过填充小拓扑复杂性的尖点双曲三维流形来获得。特别是,我们的目标是找到低容量的封闭和尖流形,并解释成功的SnapPea人口普查中确定的低容量流形。直到20世纪90年代中期,闭可定向双曲3-流形的最佳体积下限似乎是可能的最低体积的1/1000。然后论文“同伦双曲3-流形是双曲的”改善了低容量的界限的一个因素的一百。随后,许多作者利用这一结果来进一步改进下界估计。现在,PI相信他们已经开发出一种基本的新工具(PART技术),它不仅可以找到低容量的闭合和尖点双曲三维流形,而且还可以详细解释为什么复杂性猜想是正确的。我们的方法是一个令人满意的混合初等双曲几何,3流形拓扑,莫尔斯理论,严格的计算机分析。我们的方法的实施将涉及数学家在不同的数学核心领域的专业知识,并与我们的方法中使用的其他领域的良好知识。180年前,W。博尔艾角F. Gauss和N.罗巴切夫斯基开创了一场科学思想的革命,创造了一种替代欧几里得几何的几何学。 这种非欧几里德几何,称为双曲几何,已被证明是数学中的一个了不起的工具。 例如,W. Thurston在1970年代和1980年代表明,绝大多数三维空间(3-流形)具有以双曲几何为模型的几何结构,并且这种几何结构可以用来回答关于基本三维流形的基本问题。 事实上,双曲三维流形在过去的40年里一直是严格审查的主题,取得了惊人的成果;最近,Y。尽管有这些进步和G.佩雷尔曼,该理论的最基本要素之一仍有待理解。特别地,分析双曲三维流形的最自然的工具是使用几何来测量其大小,即,Thurston证明了存在一个最小体积的双曲3-流形,一个次低体积,一个次低体积,等等,但是尽管经过25年的努力,没有一个具有这些低体积的3-流形被最终确定。 这个提议引入了一个令人吃惊的新技术--双曲技术--PI计划开发这个技术来找到所有这些低容量流形,并解释低容量双曲流形必须具有的属性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vyjayanthi Chari其他文献

Realization of level one representations of $U\sb q(\hat{\mathfrak {g}})$ at a root of unity
在单位根处实现 $Usb q(hat{mathfrak {g}})$ 的一级表示
  • DOI:
    10.1215/s0012-7094-01-10816-8
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Vyjayanthi Chari;N. Jing
  • 通讯作者:
    N. Jing
On Multigraded Generalizations of Kirillov–Reshetikhin Modules
基里洛夫-列舍季欣模的多级推广
  • DOI:
    10.1007/s10468-013-9408-0
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    A. Bianchi;Vyjayanthi Chari;G. Fourier;A. Moura
  • 通讯作者:
    A. Moura
Macdonald Polynomials and level two Demazure modules for affine $mathfrak{sl}_{n+1}$.
仿射 $mathfrak{sl}_{n 1}$ 的麦克唐纳多项式和二级 Demazure 模块。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rekha Biswal;Vyjayanthi Chari;Peri Shereen;Jeffrey O. Wand
  • 通讯作者:
    Jeffrey O. Wand
Integrable and Weyl Modules for Quantum Affine Sl 2
Quantum Affine Sl 2 的可积模块和 Weyl 模块
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vyjayanthi Chari;A. Pressley
  • 通讯作者:
    A. Pressley
Q A ] 22 S ep 2 01 0 Minimal a ffi nizations as projective objects
QA ] 22 Sep 2 01 0 最小仿射作为射影物体
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vyjayanthi Chari;Jacob Greenstein
  • 通讯作者:
    Jacob Greenstein

Vyjayanthi Chari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vyjayanthi Chari', 18)}}的其他基金

Demazure Flags, Hypergeometric Series, and Quantum Affine Algebras
Demazure 标志、超几何级数和量子仿射代数
  • 批准号:
    1719357
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
New Directions in Lie theory
谎言理论的新方向
  • 批准号:
    1344259
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum Affine Algebras: BGG reciprocity, Macdonald Polynomials, Schur postivity
量子仿射代数:BGG 互易性、Macdonald 多项式、Schur postivity
  • 批准号:
    1303052
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Algebraic and Combinatorial Approaches to Representation Theory
表示论的代数和组合方法
  • 批准号:
    0963910
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Beyond Kirillov--Reshetikhin modules: character formulae and highest weight categories
超越基里洛夫--雷舍蒂欣模块:角色公式和最高权重类别
  • 批准号:
    0901253
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Crystals, level zero representations and the Littelmann path model
晶体、零级表示和 Littelmann 路径模型
  • 批准号:
    0500751
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Modular Interfaces, February 18-20, 1995, University of California, Riverside
数学科学:模块化接口,1995 年 2 月 18-20 日,加州大学河滨分校
  • 批准号:
    9500848
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了