Special Functions and Transcedence
特殊功能与超越
基本信息
- 批准号:0600826
- 负责人:
- 金额:$ 14.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator proposes several problems in arithmeticgeometry and transcendental number theory that explore the arithmeticnature of special values of analytic functions. In one project, theinvestigator plans to study transcendence and algebraic independence ofnumbers in positive characteristic arising from Anderson-Drinfeld motives. These transcendence questions are closely connected to Galois groups of Frobenius difference equations, and in particular the investigatorproposes to pursue the interaction between transcendence theory and Galoistheory to study function field multiple zeta values, periods and logarithms of Drinfeld modules, and higher dimensional versions. The investigator proposes to study Fourier coefficients of modular forms and their relationships with finite field hypergeometric functions and Calabi-Yau manifolds. He plans also to discover arithmetic properties of the extension groups of elliptic curves and their connections with Galois representations.One of the fundamental branches of modern mathematics, number theoryserves as the basis for many applications, including cryptography andcoding theory. The proposed research considers questions involving theinterplay between arithmetic and analytic aspects of number theory, which have their beginnings in classical work of Euler and Gauss and which continue to have important implications today to the essential understanding of problems both in number theory and in many other branches of mathematics. Several parts of the project lead naturally to problems for graduate and undergraduate research.
研究人员在算术几何和超越数论中提出了几个探索解析函数特殊值的算术性质的问题。在一个项目中,研究人员计划研究安德森-德恩菲尔德动机产生的正特征数的超越性和代数独立性。这些超越问题与Galois组的Frobenius差分方程组密切相关,特别是研究者提出追求超越理论和Galois理论之间的相互作用来研究函数域的多重Zeta值、Drinfeld模的周期和对数以及高维形式。作者建议研究模形式的傅立叶系数及其与有限域超几何函数和Calabi-Yau流形的关系。他还计划发现椭圆曲线扩张群的算术性质及其与伽罗瓦表示的联系。作为现代数学的基本分支之一,数论是许多应用的基础,包括密码学和编码理论。这项拟议的研究考虑了涉及数论的算术和分析方面的相互作用的问题,这些问题起源于欧拉和高斯的经典著作,今天继续对数论和许多其他数学分支中的问题的基本理解具有重要影响。该项目的几个部分自然会导致研究生和本科生研究的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Papanikolas其他文献
Matthew Papanikolas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Papanikolas', 18)}}的其他基金
Arithmetic of Function Fields and Diophantine Geometry
函数域算术和丢番图几何
- 批准号:
1902042 - 财政年份:2019
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Arithmetic and Transcendence of Values of Special Functions
特殊函数值的算术与超越
- 批准号:
1501362 - 财政年份:2015
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Arithmetic and Transcendence of Values of Special Functions
特殊函数值的算术与超越
- 批准号:
1200577 - 财政年份:2012
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
22nd Annual Workshop on Automorphic Forms and Related Topics - College Station, TX
第 22 届自守形式及相关主题年度研讨会 - 德克萨斯州大学城
- 批准号:
0820885 - 财政年份:2008
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Transcendental Numbers and Special Analytic Functions
超越数和特殊解析函数
- 批准号:
0340812 - 财政年份:2003
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 14.62万 - 项目类别:
Studentship
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Fellowship Award
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
BB/Y512527/1 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
- 批准号:
BB/X018512/1 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Research Grant
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Fellowship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
2894877 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Studentship
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
- 批准号:
2340722 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
- 批准号:
2416250 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant