Realistic many-body approach to materials with strong nonlocal correlations

针对具有强非局部相关性的材料的现实多体方法

基本信息

项目摘要

Our project aims at substantial progress in the development of a realistic dynamical meanfield theory. This is achieved by advancing our present-day impurity solvers and by improving the interface to band theory. We employ optimized quantum Monte-Carlo techniques for the numerical evaluation of the recently developed dual-fermion approach which is extended for a general impurity model with several orbitals and sites. Our goal is to include non-local correlations beyond the single-site DMFT, to include long wave-length modes and to calculate dynamical two-particle correlation functions. These finite-temperature (T>0) methods are checked against a T=0solver that will be developed by using a recent reformulation of the (dynamical) density-matrix renormalization group in terms of matrix-product states. The prime goal is to provide and apply a T=0multi-orbital impurity solver without a sign problem and for real frequencies. Vital methodical progress is envisaged at the interface of DMFT to effective single-particle methods: This comprises tailored basis sets for an efficient representation of the correlated subspace, global charge self-consistency as well as access to phase diagrams and atomic forces due to a reliable scheme to compute the free energy. Correlated transition metals and compounds as well as correlation-induced insulators and frustrated lattice systems are considered.
我们的项目的目的是在一个现实的动态平均场理论的发展取得实质性进展。这是通过推进我们目前的杂质解决方案,并通过改善界面带理论。我们采用优化的量子蒙特-卡罗技术的数值评估最近开发的双费米子的方法,这是扩展到一个一般的杂质模型与几个轨道和网站。我们的目标是包括非本地的相关性超出单站点DMFT,包括长波长模式和计算动态的两粒子相关函数。这些有限温度(T>0)的方法检查对T= 0的求解器,将通过使用最近的(动态)密度矩阵重整化群的矩阵产品状态的重新制定。我们的主要目标是提供和应用一个T= 0的多轨道杂质求解器没有一个符号的问题,并为真实的频率。在DMFT与有效的单粒子方法的接口处,设想了重要的方法学进展:这包括定制的基组,用于有效地表示相关子空间、全局电荷自洽性以及由于计算自由能的可靠方案而获得相图和原子力。相关的过渡金属和化合物,以及相关诱导的绝缘体和阻挫晶格系统被认为是。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Lichtenstein其他文献

Professor Dr. Alexander Lichtenstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Lichtenstein', 18)}}的其他基金

Nanoscale magnetic phenomena driven by electron correlations
由电子关联驱动的纳米级磁现象
  • 批准号:
    267605795
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Atomistic theory of impurity and substrate effects in graphene
石墨烯中杂质和底物效应的原子理论
  • 批准号:
    173546874
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Spectral function of highly-correlated electron systems
高度相关电子系统的谱函数
  • 批准号:
    18060102
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于序列深度显微图像的非织造滤材三维结构重建
  • 批准号:
    61771123
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
  • 批准号:
    2337991
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
  • 批准号:
    EP/Y036069/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
  • 批准号:
    2310283
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Elements: Embedding Framework for Quantum Many-Body Simulations
元素:量子多体模拟的嵌入框架
  • 批准号:
    2310582
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric approaches to quantum many body problems
量子多体问题的几何方法
  • 批准号:
    DE230100829
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了