Nonlinear Problems in Convex and Conformal Geometry
凸几何和共形几何中的非线性问题
基本信息
- 批准号:0604638
- 负责人:
- 金额:$ 12.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0604638Principal Investigator: Wenxiong ChenThe principal investigator will work on a series of nonlinearpartial differential equations, integral equations and systems,as well as other nonlinear problems. Most of the problems arisefrom differential or convex geometry, such as the semi-linearelliptic equations from prescribing Gaussian and scalar curvatureand the Monge-Ampere equations from the well-known Lp- Minkowskiproblem.According to Einstein, the Universe we lived in is a curvedspace, in which gravity is realized as a distortion or bending ofspace-time in the neighborhood of a massive object and thischange of shape is measured by curvature. One of these projects is focused on understanding when a given function canbecome a curvature. This is a challenging problem in globalanalysis and has interesting consequences in Riemannian Geometry.The other of the PI's major projects, the Lp Minkowski problem,is the central question of the Brunn-Minkowski Theory, which isthe very core of Convex Geometric Analysis. Results in this areahave been applied to numerous disciplines, including stereology,stochastic geometry, integral geometry, number theory,combinatorics, probability, statistics, and information theory.The nonlinear partial differential equations and integralequations and systems studied in this project also have variousapplications in physics, chemistry, and biology. One example is amodeling of chemical reaction in rivers or in blood streams,which would provide useful information in controlling pollutionin rivers.
AbstractAward:DMS-0604638项目负责人:陈文雄项目负责人将研究一系列非线性偏微分方程、积分方程和系统,以及其他非线性问题。大多数的问题都来自于微分几何或凸几何,例如半线性椭圆方程来自于高斯曲率和标量曲率,蒙格-安培方程来自于著名的Lp-Minkowski问题。根据爱因斯坦的观点,我们所生活的宇宙是一个弯曲的空间,在这个空间中,引力被实现为一个大质量物体附近时空的扭曲或弯曲,这种形状的变化是通过曲率来测量的。其中一个项目的重点是理解一个给定的函数何时可以成为一个曲率。这是一个具有挑战性的问题在全球分析和有趣的后果在黎曼几何。另一个PI的主要项目,Lp闵可夫斯基问题,是中心问题的布伦-闵可夫斯基理论,这是非常核心的凸几何分析。这一领域的研究成果已应用于体视学、随机几何、积分几何、数论、组合学、概率论、统计学和信息论等众多学科,本项目所研究的非线性偏微分方程、积分方程和系统在物理、化学和生物学中也有着广泛的应用。一个例子是模拟河流或血流中的化学反应,这将为控制河流污染提供有用的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenxiong Chen其他文献
The operative dynamic recrystallization mechanism of austenite during the transient deformation in a Ni-30%Fe model alloy
Ni-30� 模型合金瞬态变形过程中奥氏体动态再结晶的有效机制
- DOI:
10.1088/1742-6596/1270/1/012047 - 发表时间:
2019-08 - 期刊:
- 影响因子:0
- 作者:
Wenxiong Chen;Chengwu Zheng;Dianzhong Li - 通讯作者:
Dianzhong Li
Bi-semiconductor heterojunction Cusub9/subSsub5/sub@VOsub2/sub microspheres with morphology regulation as broadband high-performance electromagnetic wave absorber
具有形貌调控的双半导体异质结 Cusub9/subSsub5/sub@VOsub2/sub 微球作为宽带高性能电磁波吸收剂
- DOI:
10.1016/j.apsusc.2022.155539 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:6.900
- 作者:
Wenxiong Chen;Honglong Xing;Shengtao Gao;Ping Yang;Xiaoli Ji - 通讯作者:
Xiaoli Ji
On a nonlinear parabolic system-modeling chemical reactions in rivers
非线性抛物线系统——模拟河流中的化学反应
- DOI:
10.3934/cpaa.2005.4.889 - 发表时间:
2005 - 期刊:
- 影响因子:1
- 作者:
Wenxiong Chen;Congming Li;E. S. Wright - 通讯作者:
E. S. Wright
A direct blowing-up and rescaling argument on nonlocal elliptical equations
非局部椭圆方程的直接放大和重新缩放论证
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0.6
- 作者:
Wenxiong Chen;Congming Li;Yan Li - 通讯作者:
Yan Li
上半空间分数阶拉普拉斯方程的刘维尔定理
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1.7
- 作者:
Wenxiong Chen;Yanqin Fang;Ray Yang - 通讯作者:
Ray Yang
Wenxiong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenxiong Chen', 18)}}的其他基金
Nonlinear PDEs in Geometric Analysis
几何分析中的非线性偏微分方程
- 批准号:
0072328 - 财政年份:2000
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Elliptic Equations in Differential Geometry
数学科学:微分几何中的非线性椭圆方程
- 批准号:
9704861 - 财政年份:1997
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Elliptic Equations and Systems from Geometry
数学科学:非线性椭圆方程和几何系统
- 批准号:
9403629 - 财政年份:1994
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Methods for Solutions of Some Nonlinear Eliptic Equations
数学科学:一些非线性椭圆方程的解法
- 批准号:
9116949 - 财政年份:1991
- 资助金额:
$ 12.34万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 12.34万 - 项目类别:
Continuing Grant
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
- 批准号:
23K10995 - 财政年份:2023
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Convex relaxation of problems in data science and efficient solution methods
数据科学中问题的凸松弛及高效解决方法
- 批准号:
RGPIN-2020-04096 - 财政年份:2022
- 资助金额:
$ 12.34万 - 项目类别:
Discovery Grants Program - Individual
A further challenge to the optimization problems with submodular discrete-convex structures
对子模离散凸结构优化问题的进一步挑战
- 批准号:
22K11922 - 财政年份:2022
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Convex relaxation of problems in data science and efficient solution methods
数据科学中问题的凸松弛及高效解决方法
- 批准号:
RGPIN-2020-04096 - 财政年份:2021
- 资助金额:
$ 12.34万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization for inverse problems
反问题的凸优化
- 批准号:
RGPIN-2017-04461 - 财政年份:2021
- 资助金额:
$ 12.34万 - 项目类别:
Discovery Grants Program - Individual
Convex relaxation of problems in data science and efficient solution methods
数据科学中问题的凸松弛及高效解决方法
- 批准号:
RGPIN-2020-04096 - 财政年份:2020
- 资助金额:
$ 12.34万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization for inverse problems
反问题的凸优化
- 批准号:
RGPIN-2017-04461 - 财政年份:2020
- 资助金额:
$ 12.34万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization for inverse problems
反问题的凸优化
- 批准号:
RGPIN-2017-04461 - 财政年份:2019
- 资助金额:
$ 12.34万 - 项目类别:
Discovery Grants Program - Individual
A study of manifolds of optimization problems via convex algebraic geometry
通过凸代数几何研究流形优化问题
- 批准号:
19K03631 - 财政年份:2019
- 资助金额:
$ 12.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)