Theoretical Studies in Fluid Dynamics and Geophysical Fluid Dynamics
流体动力学和地球物理流体动力学理论研究
基本信息
- 批准号:0605067
- 负责人:
- 金额:$ 23.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The phenomena of the atmosphere and ocean are extremely rich in their organization and complexity; many of them cannot be produced by experiments. These phenomena involve a broad range of temporal and spatial scales. The understanding of these complicated phenomena and the relevant scientific issues is one of the grand challenges of contemporary science, and has huge societal impacts. The investigator proposes to study the nature and theory of fluid dynamics and geophysical fluid dynamics, focusing on the structure, its formation, its robustness/stability and transitions of fluid flows and geophysical fluid flows. The study is centered around novel strategies for low-frequency climate variabilities, including in particular specific topics in three interrelated areas: (A) dynamic bifurcation theory and its applications to fluid mechanics,(B) bifurcation and stability issues in geophysical fluid dynamics, and(C) a geometrical theory of incompressible fluid flows and geophysical fluid flows.The study focuses on both fundamental fluid dynamics problems and geophysical fluid dynamics problems including the thermohaline circulation and the tropical circulations associated with the El Nino prediction. The investigator uses a combination of physical modeling, rigorous mathematical theory, and large-scale computing to yield new insights into physical phenomena. The proposed study involves on the one hand applications of existing mathematical theory to the understanding of the underlying physical problems, and on the other hand the development of new mathematical theories. In particular, the proposed work is based on two new mathematical theories which are developed recently by the PI in collaboration with Tian Ma. These theories are motivated by the study in geophysical fluid dynamics, and have additional benefit for other disciplines in science and engineering. The proposed project involves challenging problems with important practical implications for geophysical efforts to quantify predictability, analyze error growth in dynamical models, and develop efficient forecast methods. These investigations will be of great benefit in improving predictions on weather and climate changes, which are of central importance to our economy.
大气和海洋现象的组织性和复杂性极其丰富,其中许多现象不是通过实验就能产生的。这些现象涉及广泛的时间和空间尺度。对这些复杂现象和相关科学问题的理解是当代科学面临的重大挑战之一,具有巨大的社会影响。研究人员建议研究流体动力学和地球物理流体动力学的性质和理论,重点研究流体流动和地球物理流体流动的结构、形成、稳健性/稳定性和转变。这项研究围绕着低频气候变化的新策略,特别是包括三个相互关联的领域的具体主题:(A)动力分叉理论及其在流体力学中的应用,(B)地球物理流体动力学中的分叉和稳定性问题,以及(C)不可压缩流体流动和地球物理流体流动的几何理论。研究重点是基本流体动力学问题和地球物理流体动力学问题,包括与厄尔尼诺预测有关的热盐环流和热带环流。研究人员使用物理模型、严格的数学理论和大规模计算的组合来产生对物理现象的新见解。拟议的研究一方面涉及应用现有的数学理论来理解潜在的物理问题,另一方面涉及新的数学理论的发展。特别是,拟议的工作是基于两个新的数学理论,这两个新的数学理论是最近由PI与天马合作开发的。这些理论是由地球物理流体动力学的研究推动的,对科学和工程中的其他学科也有额外的好处。拟议的项目涉及对地球物理工作具有重要实际影响的挑战性问题,以量化可预测性,分析动力学模型中的误差增长,并开发有效的预测方法。这些调查将对改善对天气和气候变化的预测大有裨益,这对我们的经济至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shouhong Wang其他文献
Attractors for the 3D baroclinic quasi-geostrophic equations of large-scale atmosphere
- DOI:
10.1016/0022-247x(92)90078-r - 发表时间:
1992-03 - 期刊:
- 影响因子:1.3
- 作者:
Shouhong Wang - 通讯作者:
Shouhong Wang
LEARNING MONOTONIC‐CONCAVE INTERVAL CONCEPTS USING THE BACK‐PROPAGATION NEURAL NETWORKS
使用反向传播神经网络学习单调凹区间概念
- DOI:
10.1111/j.1467-8640.1996.tb00262.x - 发表时间:
1996 - 期刊:
- 影响因子:2.8
- 作者:
Shouhong Wang - 通讯作者:
Shouhong Wang
Low-Dimensional Galerkin Approximations of Nonlinear Delay Differential Equations
非线性时滞微分方程的低维伽辽金近似
- DOI:
10.3934/dcds.2016.36.4133 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
M. Chekroun;M. Ghil;Honghu Liu;Shouhong Wang - 通讯作者:
Shouhong Wang
A neural network technique in modeling multiple criteria multiple person decision making
模拟多标准多人决策的神经网络技术
- DOI:
10.1016/0305-0548(94)90047-7 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Shouhong Wang;N. Archer - 通讯作者:
N. Archer
Approximate inertial manifolds for the 2D model of atmosphere
二维大气模型的近似惯性流形
- DOI:
10.1080/01630569108816416 - 发表时间:
1990 - 期刊:
- 影响因子:1.2
- 作者:
Shouhong Wang - 通讯作者:
Shouhong Wang
Shouhong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shouhong Wang', 18)}}的其他基金
Theoretic Studies in Geophysical Fluid Dynamics and Climate Dynamics
地球物理流体动力学和气候动力学理论研究
- 批准号:
1515024 - 财政年份:2015
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Theoretic Studies in Geophysical Fluid Dynamics and Climate Dynamics
地球物理流体动力学和气候动力学理论研究
- 批准号:
1211218 - 财政年份:2012
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Collaborative Research, Type 1, L02170206: Climate Sensitivity, Stochastic Models and GCM-EaSM Optimization
合作研究,类型 1,L02170206:气候敏感性、随机模型和 GCM-EaSM 优化
- 批准号:
1049114 - 财政年份:2011
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
International Conference on Advances in Partial Differential Equations and their Applications
偏微分方程及其应用进展国际会议
- 批准号:
1002618 - 财政年份:2010
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Theoretic Studies in Geophysical Fluid Dynamics and Climate Dynamics
地球物理流体动力学和气候动力学理论研究
- 批准号:
0908051 - 财政年份:2009
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Theoretical Studies in Geophysical Fluid Dynamics
地球物理流体动力学理论研究
- 批准号:
0306447 - 财政年份:2003
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
A Theoretical Study of Climate Dynamics
气候动力学的理论研究
- 批准号:
0072612 - 财政年份:2000
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Mathematical Problems in Meteorology, Oceanography and Climatology
数学科学:气象学、海洋学和气候学中的一些数学问题
- 批准号:
9623071 - 财政年份:1996
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
相似海外基金
Formation of Empirical Studies and Theoretical Analysis for Contemporary »Fluid« Theater
当代实证研究和理论分析的形成
- 批准号:
22K13002 - 财政年份:2022
- 资助金额:
$ 23.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical Studies in Geophysical Fluid Dynamics
地球物理流体动力学理论研究
- 批准号:
0306447 - 财政年份:2003
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
Mechanisms of acoustic stimulation of fluid flow in porous media: Integration of laboratory pore-scale studies and theoretical model development
多孔介质中流体流动的声学刺激机制:实验室孔隙尺度研究和理论模型开发的结合
- 批准号:
0125214 - 财政年份:2002
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
1) Studies in gravity waves 2) theoretical studies in interactions of particles in Newtonian and non-Newtonian viscous fluid
1) 重力波研究 2) 牛顿和非牛顿粘性流体中粒子相互作用的理论研究
- 批准号:
5294-1996 - 财政年份:2000
- 资助金额:
$ 23.59万 - 项目类别:
Discovery Grants Program - Individual
1) Studies in gravity waves 2) theoretical studies in interactions of particles in Newtonian and non-Newtonian viscous fluid
1) 重力波研究 2) 牛顿和非牛顿粘性流体中粒子相互作用的理论研究
- 批准号:
5294-1996 - 财政年份:1999
- 资助金额:
$ 23.59万 - 项目类别:
Discovery Grants Program - Individual
RUI: Experimental and Theoretical Studies on Ultrasound- Modulated Two-Fluid Atomization
RUI:超声调制二流体雾化的实验和理论研究
- 批准号:
9812050 - 财政年份:1998
- 资助金额:
$ 23.59万 - 项目类别:
Standard Grant
1) Studies in gravity waves 2) theoretical studies in interactions of particles in Newtonian and non-Newtonian viscous fluid
1) 重力波研究 2) 牛顿和非牛顿粘性流体中粒子相互作用的理论研究
- 批准号:
5294-1996 - 财政年份:1998
- 资助金额:
$ 23.59万 - 项目类别:
Discovery Grants Program - Individual
Experimental and theoretical studies of fluid-solute-membrane systems
流体-溶质-膜系统的实验和理论研究
- 批准号:
105370-1994 - 财政年份:1997
- 资助金额:
$ 23.59万 - 项目类别:
Discovery Grants Program - Individual
1) Studies in gravity waves 2) theoretical studies in interactions of particles in Newtonian and non-Newtonian viscous fluid
1) 重力波研究 2) 牛顿和非牛顿粘性流体中粒子相互作用的理论研究
- 批准号:
5294-1996 - 财政年份:1997
- 资助金额:
$ 23.59万 - 项目类别:
Discovery Grants Program - Individual
1) Studies in gravity waves 2) theoretical studies in interactions of particles in Newtonian and non-Newtonian viscous fluid
1) 重力波研究 2) 牛顿和非牛顿粘性流体中粒子相互作用的理论研究
- 批准号:
5294-1996 - 财政年份:1996
- 资助金额:
$ 23.59万 - 项目类别:
Discovery Grants Program - Individual