Nanocrystalline Al-Mg Alloys for Hydrogen Storage

储氢用纳米晶铝镁合金

基本信息

  • 批准号:
    0605406
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL: The hazards involved in storing and using hydrogen gas in transportation vehicles has led to the investigation of metal hydrides for hydrogen storage. The hydrides are required to have high gravimetric and volumetric storage capacities, fast hydrogenation/dehydrogenation kinetics at relatively low temperatures and stable structures in ambient conditions. Recently it has been shown that magnesium alanate, Mg(AlH4)2, has the best combination of storage capacity and dehydrogenation properties and is relatively stable under ambient conditions. However, its hydrogenation characteristics are not known. Several factors are expected to enhance the hydrogenation kinetics including reducing grain size to nano-regime, increasing the surface area and incorporating catalysts. On the other hand contamination during synthesis is a major issue that impedes the hydrogen uptake. In this program, a new synthesis technique will be developed that will produce nanocrystalline porous powders of Al-Mg alloys with controlled composition and high purity. Fundamental process of hydride formation in these alloys will be elucidated with the objective of tailoring the composition and nanostructure for optimized hydrogen storage characteristics. Electrodeposition techniques will be employed for fabricating the nanocrystalline Al-Mg alloys within 25 to 60wt% Mg composition range. Thermal stability and the phase evolution of the metastable as-deposited alloys will be investigated and selected microstructures will be tested for hydrogenation characteristics. Based on the detailed characterization of the structure at nanoscale and analysis of the hydrogenation data, a mechanistic understanding of the effects of alloy composition and structure on the hydrogen uptake kinetics will be developed. Catalysts such as graphite and Pd will be incorporated to enhance the hydrogenation kinetics, if necessary. The alloys with optimized hydrogenation properties will be investigated for their hydrogen desorption characteristics. The results of this research will provide a new technique for synthesis and shed light on the mechanisms of hydrogenation/dehydrogenation processes. NON-TECHNICAL: The fast increase in energy consumption, the drastic decrease in fossil fuels, and the demand for an efficient and clean fuel alternative have resulted to the intensive research and development of fuel cells, which require hydrogen as fuel. This is a collaborative program between the Materials Science and Engineering Department at the University of Florida and the Florida Solar Energy Center at the University of Central Florida. This work will impact the scientific community through the dissemination of the results by publishing in peer-assessed journals and presentation at national and international conferences, universities, national labs, etc. Results from these studies will help to develop a potential material for hydrogen storage which will have significant impact on the development of fuel cell driven cars. The technological impact of this research will be important because electrodeposition is a well-established industry and the transfer of technology will be very easy. The educational component of this program includes training of graduate and undergraduate students at freshman as well senior level. Since Materials Science and Engineering is not well known among the high school and middle school students, efforts will be placed on educating the teachers through participation in the MSE-teach workshop and hosting high school students in labs. Education at an international level will be promoted by providing internship for international students.
技术:运输车辆中储存和使用氢气所涉及的危险引发了对用于储氢的金属氢化物的研究。氢化物需要具有高的重量和体积存储容量、在相对较低的温度下快速的加氢/脱氢动力学以及在环境条件下稳定的结构。最近的研究表明,铝氢化镁(Mg(AlH4)2)具有最佳的存储容量和脱氢性能组合,并且在环境条件下相对稳定。然而,其加氢特性尚不清楚。预计有几个因素可以增强氢化动力学,包括将晶粒尺寸减小到纳米级、增加表面积和掺入催化剂。另一方面,合成过程中的污染是阻碍氢吸收的主要问题。在该项目中,将开发一种新的合成技术,生产成分可控、高纯度的纳米晶多孔铝镁合金粉末。将阐明这些合金中氢化物形成的基本过程,目的是调整成分和纳米结构以优化储氢特性。将采用电沉积技术来制造镁成分范围在 25 至 60wt% 的纳米晶铝镁合金。将研究亚稳态沉积合金的热稳定性和相演化,并测试选定的微观结构的氢化特性。基于纳米级结构的详细表征和氢化数据的分析,将深入了解合金成分和结构对氢吸收动力学的影响。如有必要,将加入石墨和钯等催化剂以增强氢化动力学。将研究具有优化加氢性能的合金的氢解吸特性。这项研究的结果将提供一种新的合成技术,并揭示加氢/脱氢过程的机制。非技术性:能源消耗的快速增长、化石燃料的急剧减少以及对高效清洁燃料替代品的需求导致了燃料电池的深入研究和开发,而燃料电池需要氢作为燃料。这是佛罗里达大学材料科学与工程系和中佛罗里达大学佛罗里达太阳能中心之间的合作项目。这项工作将通过在同行评估期刊上发表以及在国内和国际会议、大学、国家实验室等上发表报告来传播研究结果,从而对科学界产生影响。这些研究的结果将有助于开发一种潜在的储氢材料,这将对燃料电池驱动汽车的发展产生重大影响。这项研究的技术影响非常重要,因为电沉积是一个成熟的行业,而且技术转让非常容易。该计划的教育部分包括对新生和高年级研究生和本科生的培训。由于材料科学与工程在高中生和初中生中还不是很了解,因此我们将通过参加 MSE 教学研讨会和接待高中生到实验室来努力对教师进行教育。将通过为国际学生提供实习来促进国际水平的教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fereshteh Ebrahimi其他文献

CRISPR-Cas based biosensors as innovative platforms for diagnosis of human papilloma virus infection
基于 CRISPR-Cas 的生物传感器作为诊断人乳头瘤病毒感染的创新平台
  • DOI:
    10.1016/j.microc.2025.112991
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Saeideh Hassanzadeh;Fereshteh Ebrahimi;Ahmadreza Saeni;Hamidreza Kheiri;Mehdi Shamsara
  • 通讯作者:
    Mehdi Shamsara
Potentiostatic versus galvanostatic electrodeposition of nanocrystalline Al–Mg alloy powders
  • DOI:
    10.1007/s10008-011-1522-5
  • 发表时间:
    2011-08-17
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Sankara Sarma V. Tatiparti;Fereshteh Ebrahimi
  • 通讯作者:
    Fereshteh Ebrahimi
The Correlation between HSP27 Protein Levels and Gene Expression with Symptoms Severity in COVID-19 Patients
COVID-19 患者 HSP27 蛋白水平和基因表达与症状严重程度的相关性
An understanding of the electrodeposition process of Al–Mg alloys using an organometallic-based electrolyte
  • DOI:
    10.1007/s10800-010-0190-y
  • 发表时间:
    2010-09-18
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Sankara Sarma V. Tatiparti;Fereshteh Ebrahimi
  • 通讯作者:
    Fereshteh Ebrahimi
EG.5 (Eris) and BA.2.86 (Pirola) two new subvariants of SARS-CoV-2: a new face of old COVID-19
  • DOI:
    10.1007/s15010-023-02146-0
  • 发表时间:
    2024-01-03
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Abdolreza Esmaeilzadeh;Fereshteh Ebrahimi;Armin Jahani Maleki;Amir Siahmansouri
  • 通讯作者:
    Amir Siahmansouri

Fereshteh Ebrahimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fereshteh Ebrahimi', 18)}}的其他基金

Deformation and Failure of Nanocrystalline Metals
纳米晶金属的变形和失效
  • 批准号:
    9980213
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanical Properties of Laminated Copper-Based Composites Produced by Electrodeposition Techniques
电镀技术生产的层压铜基复合材料的机械性能
  • 批准号:
    9527624
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing grant

相似国自然基金

基于压致微结构Al-Si-Cu-Mg合金的强韧化与耐蚀机理研究
  • 批准号:
    QN25E010006
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
低应变瞬态强冲击诱发Al-Cu-Mg合金析出相低温回溶机理研究
  • 批准号:
    2025JJ70063
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Sr/RE复合变质下Al-Si-Mg-Cu合金的强韧化机制研究
  • 批准号:
    2025JJ80374
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
车用Al-Mg-Si-Zr合金Cube织构演变规律及高成形性机理
  • 批准号:
    JCZRLH202500854
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 Si-Zr 复合微合金化的增材制造Al-Cu-Mg合金疲劳行 为及损伤机理研究
  • 批准号:
    2024JJ6029
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
层状Al/Mg板材热辊轧制复合变形协调机制及界面扩散行为研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Mg-Li-Al合金孪晶强化和析出强化协同机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
高锌Al-Zn-Mg合金多尺度微观结构调控与强度-阻尼协同提升机制研究
  • 批准号:
    52301184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高强Al-Zn-Mg-Cu合金连续大塑性变形位错与析出相交互作用及强韧化机理
  • 批准号:
    52304396
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
铸造Al-Si-Mg-(Cu、Zn)合金中第二相的组态演变与强化机理研究
  • 批准号:
    52374386
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-modal 3D image-based analysis of hydrogen embrittlement behavior in Al-Zn-Mg alloy via local hydrogen accumulation
基于多模态 3D 图像的 Al-Zn-Mg 合金局部氢积累氢脆行为分析
  • 批准号:
    23K13564
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
β相およびAl-rich-α相の形態制御による高耐食性Mg-Al-X合金の開発
控制β相和富Al-α相形貌开发高耐蚀Mg-Al-X合金
  • 批准号:
    22K04774
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface Evolution of Automotive Al-Zn-Mg-Fe Castings During Pre-Treatment
汽车铝锌镁铁铸件预处理过程中的表面演变
  • 批准号:
    563045-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Production process of Al-Mg-Sc master alloy for microalloying
微合金化用Al-Mg-Sc中间合金的生产工艺
  • 批准号:
    21H01678
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Competitive understanding of hydrogen embrittlement and ductile fracture based on IMC particles in Al-Zn-Mg alloys
基于 Al-Zn-Mg 合金中 IMC 颗粒的氢脆和韧性断裂的竞争性理解
  • 批准号:
    21K14037
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Through Process Model for High Strength Al-Mg-Si-Cu extrusion alloys
高强度 Al-Mg-Si-Cu 挤压合金的全过程模型
  • 批准号:
    520748-2017
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Thermodynamic modelling of Mg-Al-Ca and its defect phases (C06)
Mg-Al-Ca 及其缺陷相的热力学模拟 (C06)
  • 批准号:
    437516288
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Multi-length scale studies of early stage precipitation hardening phenomena in Al and Mg alloys
铝镁合金早期沉淀硬化现象的多尺度研究
  • 批准号:
    RGPIN-2015-04555
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Linking powder quality to part quality for Mg-containing monodisperse Al powders
将含镁单分散铝粉末的粉末质量与零件质量联系起来
  • 批准号:
    528434-2018
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
A Through Process Model for High Strength Al-Mg-Si-Cu extrusion alloys
高强度 Al-Mg-Si-Cu 挤压合金的全过程模型
  • 批准号:
    520748-2017
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了