RUI: Theoretical (Numerical) Investigations of Novel Transport and Topological Properties of Two-Dimensional Interacting Electron Systems

RUI:二维相互作用电子系统新输运和拓扑性质的理论(数值)研究

基本信息

  • 批准号:
    0605696
  • 负责人:
  • 金额:
    $ 10.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

This project involves theoretical (numerical) approaches to the fundamental nature of new emerging quantum phases and associated novel transport and topological properties in several electron systems. The research will be done at a predominantly undergraduate institution and will afford opportunities for undergraduates and graduate students to participate in the research. The research is comprised of three projects.Firstly, the Principal Investigator (PI) proposes to study the new emerging quantum Hall effect (QHE) in coupled bi-layer electron systems with strong electron-electron interaction. A new quantum phase characterized by the coexistence of integer QHE and exciton condensation has recently been established experimentally, by conducting counter-flow currents in bi-layer systems. Novel fractional QHE states including the non-Abelian paired Hall states are also suggested by experiments. On the theoretical side, it remains an open issue how to characterize quantum Hall states with features besides their charge (total) Hall conductance. A new numerical method based on a matrix of topological invariant Chern numbers has been developed by the PI and her collaborators for this purpose, which will be applied to study the Coulomb drag transport, charge Hall effect and the transport properties in counter-flow current measurement as well as quantum phase transitions in bi-layer systems. We are aiming at understanding the existing experimental observations, characterizing the nature of quantum phase transitions for these new quantum states, and making quantitative predictions regarding transport measurements for future experiments.Secondly, the PI proposes to study the novel QHE of two-dimensional (2D) interacting Dirac fermions in graphene. In recent experiments, a series of QHE plateaus with unconventional quantization rule have been observed for Dirac fermions in single-atom-thick graphite (graphene) system. So far, the interplay of the novel band structure, disorder potential and Coulomb interaction has not been studied yet, which may soon become one of the central topics in the field of QHE. We propose to perform a systematic numerical study using microscopic band model taking into account all these important aspects of the material, which may provide valuable information and further stimulate experimental research.Thirdly, the fundamental problem whether electron-electron interaction can lead to spin-liquid state with topological ordering and fractionalization in 2D electron system will also be investigated numerically. Understanding this issue will have important impact on the theory of strongly correlated electron systems and the future development of the topological quantum computing. We are aiming to identify some concrete examples of topological ordered spin-liquid state in 2D electron systems based on extensive numerical calculations of low energy spectrum, topological degeneracy and spin-spin correlation function.The intellectual merit of this proposal is that the topics addressed are of fundamental importance for the understanding of the new physical phenomena in 2D electron systems. The broader impact on society of the proposed research project is twofold. Firstly, the project will impact on the future development of new magneto-electronic devices and topological quantum computing qubits. Secondly, the present project will provide students and postdoctoral fellows with excellent introduction and training about how to carry out research at the forefront of physics and will also prepare them for dealing with practical problems in future academic and non-academic careers. In the past a few years, PI and her collaborators have developed novel and effective numerical methods, based on topological invariant quantities, to study the quantum transport and topological properties of interacting electron systems. Thus we believe that the proposed research can be carried out effectively and successfully.Non-Technical Abstract: This project involves theoretical (numerical) approaches to the fundamental nature of new emerging quantum phases and associated novel transport and topological properties in several electron systems that are found in solids. The research will be done at a predominantly undergraduate institution and will afford opportunities for undergraduates and graduate students to participate in the research.
这个项目涉及到几个电子系统中新出现的量子相的基本性质以及相关的新的输运和拓扑性质的理论(数值)方法。这项研究将在一个以本科生为主的机构进行,将为本科生和研究生提供参与研究的机会。这项研究包括三个项目。第一,首席研究员(PI)提出研究强电子-电子相互作用的耦合双层电子系统中新出现的量子霍尔效应(QHE)。通过在双层系统中传导逆流电流,最近在实验上建立了一种新的量子相,其特征是整数QHE和激子凝聚共存。实验还提出了包括非阿贝尔配对霍尔态在内的新的分数QHE态。在理论方面,除了电荷(总)霍尔电导外,如何用特征来表征量子霍尔态仍然是一个悬而未决的问题。为此,PI和她的合作者发展了一种新的基于拓扑不变陈数矩阵的数值方法,该方法将用于研究库仑阻力输运、电荷霍尔效应和逆流电流测量中的输运性质以及双层系统中的量子相变。我们的目标是理解现有的实验观察结果,表征这些新量子态的量子相变的性质,并对未来实验中的输运测量做出定量预测。其次,PI建议研究石墨烯中二维相互作用的狄拉克费米子的新型QHE。在最近的实验中,观察到了单原子厚的石墨(石墨烯)系统中狄拉克费米子的一系列非常规量子化规律的QHE平台。到目前为止,这种新的能带结构、无序势和库仑相互作用之间的相互作用还没有被研究过,这可能很快成为QHE领域的中心话题之一。我们建议使用微观能带模型进行系统的数值研究,考虑到材料的这些重要方面,这可能会提供有价值的信息,并进一步促进实验研究。第三,数值研究了二维电子系统中电子-电子相互作用是否会导致具有拓扑有序和分馏的自旋-液态态。了解这一问题将对强关联电子系统理论和拓扑量子计算的未来发展产生重要影响。基于对低能谱、拓扑简并和自旋-自旋关联函数的大量数值计算,我们的目标是确定2D电子系统中拓扑有序自旋-液态态的一些具体例子。这一提议的智力优点是所涉及的主题对于理解2D电子系统中的新的物理现象具有重要的基础意义。拟议的研究项目对社会的更广泛影响是双重的。首先,该项目将对未来新型磁电子设备和拓扑量子计算量子比特的发展产生影响。其次,本项目将为学生和博士后研究员提供关于如何在物理学前沿开展研究的极好的介绍和培训,并将使他们为处理未来学术和非学术职业中的实际问题做好准备。在过去的几年里,Pi和她的合作者发展了基于拓扑不变量的新颖而有效的数值方法来研究相互作用电子系统的量子输运和拓扑性质。因此,我们相信所提出的研究可以有效和成功地进行。非技术摘要:这个项目涉及到理论(数值)方法来研究新出现的量子相的基本性质,以及在固体中发现的几个电子系统中相关的新的输运和拓扑性质。这项研究将在一个以本科生为主的机构进行,将为本科生和研究生提供参与研究的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donna Sheng其他文献

Donna Sheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donna Sheng', 18)}}的其他基金

MRI: Acquisition of Computer Cluster for Data-Driven Discovery in Materials Research and Education
MRI:采购计算机集群,用于材料研究和教育中的数据驱动发现
  • 批准号:
    1532249
  • 财政年份:
    2015
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
RUI: Theoretical (Numerical) Investigations of Novel Quantum Phases and Transitions in Strongly Interacting Systems
RUI:强相互作用系统中新型量子相和跃迁的理论(数值)研究
  • 批准号:
    1408560
  • 财政年份:
    2014
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
RUI: Theoretical (Numerical) Investigations of Novel Quantum Phases and Transitions in Strongly Interacting Systems
RUI:强相互作用系统中新型量子相和跃迁的理论(数值)研究
  • 批准号:
    0906816
  • 财政年份:
    2009
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
RUI: Novel Transport Properties in Strongly Interacting Electron Systems
RUI:强相互作用电子系统中的新颖输运特性
  • 批准号:
    0307170
  • 财政年份:
    2003
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Numerical Investigation of Symmetric Mass Generation
职业:对称质量生成的理论和数值研究
  • 批准号:
    2238360
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
CDS&E: Theoretical, Numerical and Experimental Analysis of Gas-Ion Energy Exchange in Ion Mobility for the Separation of Polyatomic Ions
CDS
  • 批准号:
    2203968
  • 财政年份:
    2022
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Theoretical and Numerical Studies of Astrophysical Quark Matter: Implications to Nuclear and Explosive Astrophysics
天体物理夸克物质的理论和数值研究:对核和爆炸天体物理学的影响
  • 批准号:
    RGPIN-2018-04232
  • 财政年份:
    2022
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical and numerical investigation of particle-vortex interaction in semi-dilute dusty flows
半稀尘流中粒子-涡相互作用的理论与数值研究
  • 批准号:
    2148710
  • 财政年份:
    2022
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Theoretical and Numerical Studies of Astrophysical Quark Matter: Implications to Nuclear and Explosive Astrophysics
天体物理夸克物质的理论和数值研究:对核和爆炸天体物理学的影响
  • 批准号:
    RGPIN-2018-04232
  • 财政年份:
    2021
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2107934
  • 财政年份:
    2021
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Theoretical and Numerical Studies of Astrophysical Quark Matter: Implications to Nuclear and Explosive Astrophysics
天体物理夸克物质的理论和数值研究:对核和爆炸天体物理学的影响
  • 批准号:
    RGPIN-2018-04232
  • 财政年份:
    2020
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
  • 批准号:
    20K19749
  • 财政年份:
    2020
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了