Collaborative Research: Experimental and Numerical Characterization of Thin Films in Three-Dimensional Porous Media

合作研究:三维多孔介质中薄膜的实验和数值表征

基本信息

  • 批准号:
    0610108
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

0610108/0610003Wildenschild/Schaap Existing analyses on thin film characteristics in porous domains are often built on two- orquasi-three dimensional geometrically simple pore structures without explicitlyaccommodating pore connectivity in the third dimension. More in-depth numerical andexperimental studies are needed to bridge the gap between two- and three dimensionalexperimental analyses as well as the gap between three-dimensional numerical andexperimental analyses of pore-scale thin-film characteristics in granular porous media.Hence, the proposed research, which builds on our ongoing pore-scale interfacialresearch, aims at integrating experimental and numerical analyses for betterunderstanding of thin film characteristics and thermodynamics in three-dimensionalporous media consisting of interconnected arbitrary rough-walled pore geometries.In this 1-year extension proposal, we aim to develop a thermodynamically soundfree-energy-based multiphase lattice-Boltzmann model (that can handle fluids with highdensitycontrasts and implements thermodynamically-sound solid-fluid interactions). Toobtain data for model verification, we will measure thin film characteristics related tofilm formation and distribution in a crushed volcanic tuff. This includes imaging waterdistributions as they progress from adsorbed films to capillary held water with increasingvapor pressure. Based on the images it is possible to estimate the critical separationdistance at which capillary condensation takes place. The film characteristics will first bemeasured in geometrically simple two-dimensional flow channels using time-lapse digitalmicroscopy, and subsequently using computerized microtomography (CMT) for morecomplex three-dimensional systems in crushed tuff samples. From the CMT images wewill determine the location and the extent of the capillary condensed regions to be used tovalidate new model developments.Once the model is validated using the two-dimensional experimental data, themodel will be used to simulate thin film formation and distributions in a threedimensionalnatural porous medium with hydraulically connected arbitrary poregeometries. Numerically simulated results on the geometry and extent of capillarycondensed zones will be compared to the microtomography data. The numerical modelwill then be used to map the spatial distribution of variables that cannot be measuredexperimentally such as fluid density, vapor pressure in thin films, interfacial width, andthree-dimensional curvatures, to subsequently calculate interfacial energies, surfacetension, chemical potentials, and disjoining pressures.Broader Impacts of the proposed research:We expect that the findings from the proposed research could have importantwider impacts in diverse fields where processes relevant to the low saturation regime areof significance, including arid zone irrigation and water management, fate and transportof contaminants and colloidal particles in the vadose zone, nuclear waste disposal in verydry climates, enhanced oil recovery, and in planetary sciences. In addition, the projectwill provide training for undergraduate and graduate students, as well as a post-doc.
现有的对多孔域薄膜特性的分析往往是建立在二维或准三维几何上简单的孔隙结构上,而没有明确考虑三维孔隙的连通性。需要更深入的数值和实验研究来弥补二维和三维实验分析之间的差距,以及颗粒状多孔介质中孔尺度薄膜特性的三维数值和实验分析之间的差距。因此,我们提出的研究建立在我们正在进行的孔隙尺度界面研究的基础上,旨在将实验和数值分析结合起来,以便更好地理解由相互连接的任意粗壁孔隙几何形状组成的三维多孔介质中的薄膜特性和热力学。在这个为期1年的扩展提案中,我们的目标是开发一个基于热力学声音自由能的多相晶格-玻尔兹曼模型(可以处理高密度对比的流体并实现热力学声音固-流相互作用)。为了获得模型验证的数据,我们将测量与火山凝灰岩破碎中薄膜形成和分布有关的薄膜特征。这包括成像水的分布,因为它们从吸附膜到毛细管保持水随着蒸汽压力的增加。根据图像,可以估计发生毛细凝结的临界分离距离。薄膜特性将首先使用延时数字显微镜在几何简单的二维流道中测量,随后使用计算机微断层扫描(CMT)在破碎的凝灰岩样品中测量更复杂的三维系统。从CMT图像中,我们将确定用于验证新模型开发的毛细管凝聚区域的位置和范围。一旦使用二维实验数据验证了模型,该模型将用于模拟具有水力连接任意孔隙几何形状的三维天然多孔介质中的薄膜形成和分布。数值模拟结果的几何形状和范围的毛细血管凝聚区将与微层析成像数据进行比较。然后,数值模型将用于绘制无法通过实验测量的变量的空间分布,如流体密度、薄膜中的蒸气压、界面宽度和三维曲率,从而计算界面能、表面张力、化学势和分离压力。拟议研究的更广泛影响:我们期望拟议研究的结果可以在不同领域产生重要的更广泛的影响,其中与低饱和度状态相关的过程具有重要意义,包括干旱区灌溉和水管理,渗透区污染物和胶体颗粒的命运和运输,非常干燥气候下的核废料处理,提高石油采收率,以及行星科学。此外,该项目将为本科生和研究生以及博士后提供培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dorthe Wildenschild其他文献

Dorthe Wildenschild的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dorthe Wildenschild', 18)}}的其他基金

ISS: Biofilm growth and architecture in porous media: exploring the effect of gravitational and interfacial forces on biofilm growth patterns
ISS:多孔介质中的生物膜生长和结构:探索重力和界面力对生物膜生长模式的影响
  • 批准号:
    2323014
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of a State-of-the-art High-Resolution Tomography Facility Customized for Dynamic (4D) Imaging
MRI:开发专为动态 (4D) 成像定制的最先进的高分辨率断层扫描设备
  • 批准号:
    1531316
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Interfacial Controls on Dynamics and Equilibration in Porous Media
多孔介质动力学和平衡的界面控制
  • 批准号:
    1344877
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CDI-Type II--Revolutionary Advances in Modeling Transport Phenomena in Porous Medium Systems
合作研究:CDI-Type II——多孔介质系统输运现象建模的革命性进展
  • 批准号:
    0941299
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Interfacial Dynamics in Multi-Phase Flow and Transport Processes
合作研究:多相流和传输过程中的界面动力学
  • 批准号:
    0337711
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
  • 批准号:
    2240418
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
  • 批准号:
    2247836
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
  • 批准号:
    2307887
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了