STTR Phase I: Active Learning System for Audit Selection
STTR 第一阶段:审计选择的主动学习系统
基本信息
- 批准号:0611130
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2007-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aimes to develop, validate and bring to market an innovation that has the potential to dramatically enhance the return on investment from audit of fraud or non-compliance cases. In most audit detection domains, resource intensive evaluation of cases, such as costly audits, is the principal means of monitoring (and thus enhancing) compliance. To optimize the management of audit-related resources, statistical predictive models are often developed to detect cases of non-compliance. However, there exists a fundamental flaw in the existing paradigm of detection-model development, which significantly undermines the efficacy of non-compliance detection. The historical data used to induce the scoring models is heavily biased - it is drawn from "regions"in the search space that are already known to have relatively higher likelihood of incompliance. As a result, detection models fail to produce adequate predictions when applied to detect non-compliance in new regions of the domains. This flaw results in two important consequences: (1) detection models evolve slowly, if at all, to changes in non-compliance behavior and do not effectively detect new or existing unknown "pockets" of incompliance; and (2) information from new audit merely reinforce existing perceptions rather than enhance current knowledge. It is imperative to acquire information from unknown regions to produce better detection models. The goal of this project is to leverage intelligent sampling techniques from machine learning to help identify particularly informative audits that will substantially improve future audit detection and revenue recovery for a given cost. The proposed technology draws from recent advances in active learning research, which has demonstrated to produce substantially superior models for a given (audit) acquisition cost as compared to the existing sample-acquisition paradigm. Empirical results have shown impressive improvements in a variety of industry domains. Given that audit selection has important unique properties, this project would field validate the efficacy of active learning polices for the audit-detection domain, and perhaps develop customized new policies that better utilize the properties and objectives of the audit selection domain. We conjecture that these potentially risky hurdles have impeded the present deployment of ideas from active learning research to promote audit selection practices. From a product standpoint, the approach is to encapsulate the active learning technology (to be validated in Phase I) as a software system that integrates with current operational systems and business processes. The relevant industry domains to which this technology can be applied are broad and include tax auditing, insurance claims auditing, warranty fraud, benefits abuse, and e-commerce fraud. The economic impact of non-compliance is tremendous - it was estimated that the amount of uncollected IRS taxes in1992 was 127 billion dollars, and that Medicare lost $11.9 billion to fraud and mistakes in 2000 alone. Hence cost-effective detection of noncompliance can substantially benefit the US economy.
该研究项目旨在开发,验证并推向市场的创新,有可能大大提高从欺诈或不合规案件审计的投资回报。在大多数审计检测领域,对案例进行资源密集型评估(如成本高昂的审计)是监控(从而增强)合规性的主要手段。为了优化与安全相关的资源的管理,通常开发统计预测模型来检测不合规的情况。然而,现有的侦查模式发展模式存在着一个根本性缺陷,大大削弱了不遵守情事侦查的效力。用于诱导评分模型的历史数据存在严重偏差-它是从搜索空间中已知具有相对较高的违规可能性的“区域“中提取的。因此,检测模型在应用于检测域的新区域中的不合规时无法产生足够的预测。这一缺陷导致了两个重要后果:(1)检测模型发展缓慢,如果有的话,不遵守行为的变化,并没有有效地发现新的或现有的未知的“口袋”不遵守;(2)新的审计信息只是加强现有的看法,而不是加强现有的知识。从未知区域获取信息以产生更好的检测模型是必要的。该项目的目标是利用机器学习中的智能采样技术,帮助识别特别有用的审计,这将大大改善未来的审计检测和给定成本的收入回收。所提出的技术借鉴了主动学习研究的最新进展,这已被证明产生相当上级模型为一个给定的(审计)收购成本相比,现有的样本采集范例。实证结果表明,在各个行业领域都有令人印象深刻的改善。鉴于审计选择具有重要的独特属性,该项目将现场验证主动学习策略的有效性,为恶意检测域,也许开发定制的新政策,更好地利用审计选择域的属性和目标。我们推测,这些潜在的风险障碍阻碍了目前部署的想法,从主动学习研究,以促进审计选择的做法。从产品的角度来看,这种方法是将主动学习技术(将在第一阶段进行验证)封装为与当前操作系统和业务流程集成的软件系统。该技术可以应用的相关行业领域很广泛,包括税务审计、保险索赔审计、保修欺诈、福利滥用和电子商务欺诈。不遵守的经济影响是巨大的--据估计,1992年未征收的国税局税款为1270亿美元,仅2000年一年,医疗保险就因欺诈和错误而损失了119亿美元。因此,具有成本效益的违规检测可以大大有利于美国经济。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniele Micci-Barreca其他文献
Daniele Micci-Barreca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
STTR Phase II: Nanomaterial-based Residual Active Disinfectant for Decreasing Surface Acquired Infections
STTR 第二阶段:基于纳米材料的残留活性消毒剂,用于减少表面获得性感染
- 批准号:
2208717 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cooperative Agreement
STTR Phase I: Active Blade Morphing Control to Improve Efficiency and Reduce Loading for Wind Turbines
STTR 第一阶段:主动叶片变形控制可提高风力涡轮机的效率并减少负载
- 批准号:
2151668 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Active Transport of Caffeine through a Blood-Brain Barrier Model
STTR 第一阶段:通过血脑屏障模型主动转运咖啡因
- 批准号:
2014346 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Triboluminescent sensor system for quasi-distributed load sensing on wind blades for active control of wind turbines
STTR 第一阶段:用于风力叶片准分布式负载传感的摩擦发光传感器系统,用于风力涡轮机的主动控制
- 批准号:
1549716 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Wireless Communication Integrated Active Noise Reduction System
STTR第一期:无线通信集成主动降噪系统
- 批准号:
1448907 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase II: Active Fiber Optic Sensor Array for Cryogenic Fuel Monitoring and Management
STTR 第二阶段:用于低温燃料监测和管理的有源光纤传感器阵列
- 批准号:
0956816 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Active Fiber Optic Sensor Array for Cryogenic Fuel Monitoring and Management
STTR 第一阶段:用于低温燃料监测和管理的有源光纤传感器阵列
- 批准号:
0810429 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Force Feedback Control of a Shape Memory Alloy Active Catheter for Minimally Invasive Micro-Surgery
STTR 第一阶段:用于微创显微手术的形状记忆合金主动导管的力反馈控制
- 批准号:
0741015 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Nanophotonic Chip based on Aligned Carbon Nanotube Arrays with Active Hybrid-layered Structure
STTR第一阶段:基于具有活性混合层状结构的对齐碳纳米管阵列的纳米光子芯片
- 批准号:
0711743 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Active Fouling Resistant Nanofiltration and Reverse Osmosis Membranes
STTR 第一阶段:主动防垢纳滤和反渗透膜
- 批准号:
0637664 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant