Orbit Methods in Ergodic Theory

遍历理论中的轨道方法

基本信息

  • 批准号:
    0618030
  • 负责人:
  • 金额:
    $ 9.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

The PI will study measurable orbit spaces. What is common to these spaces is that they are probability spaces; the points (or states) of such a space are linked into classes which one calls "orbits" and these orbits have a large-scale geometric or combinatorial structure. This structure could be the structure of the orbit of a countable or continuous group action or could be the structure of a binary tree of inverse images of some finite to one endomorphism. This structure could take the form of a topology or more strongly a metric on the orbits or could be a tree or graph structure with the states as nodes of the graph. The PI has developed a range of methods to investigate large-scale statistical properties on such spaces of orbits and to study notions of equivalence of these structures that allow for distortion or rearrangement of the orbits. The goal of this study is to extend these methods to as broad a perspective as possible and to apply them to answer interesting and significant questions. These methods have a significant history. They have allowed one to extend the Ornstein Isomorphism theory for Bernoulli automorphisms to endomorphisms (joint work with C. Hoffman) and give a tool for lifting large parts of the theory of actions of Z to actions of general discrete amenable groups (joint work with B. Weiss) via an orbit transference method. This proposal suggests an array of natural directions to proceed. The generalization to trees of inverse images of endomorphisms can be pushed to a study of trees or graphs in general and various geometric notions of similarity of such trees. Recent work indicates ways to effectively generalize to non-singular and even singular dynamics. One can also generalize both the labeling space and the index space to be continua, leading to a study of Brownian motion as the continuous analogue of a uniform endomorphism. Work to date, and the work proposed will continue to advance our understanding of measurable dynamics and of measurable orbit structures more generally. Such structures are common in mathematics and other hard sciences.Ergodic theory and measurable dynamics have their roots in thermodynamics, celestial mechanics, probability theory, and functional analysis. They have applications within mathematics to algebra, combinatorics, and number theory geometry, probability and statistics. Outside of mathematics, there are applications in physics, chemistry, electrical engineering and genetics. The training of graduate students is central to this proposal as well. The PI, the Department and the University of Maryland have demonstrated a strong commitment to diversity and to the proper training and mentoring of students.1
PI将研究可测量的轨道空间。这些空间的共同之处在于它们都是概率空间;这样一个空间中的点(或状态)被连接成我们称之为“轨道”的类,这些轨道具有大规模的几何或组合结构。这种结构可以是可数或连续群作用的轨道结构,也可以是有限到一个自同态的逆象的二叉树结构。这种结构可以是拓扑结构,或者轨道上的度规结构,也可以是树结构或图结构,状态作为图的节点。PI已经开发了一系列方法来研究这些轨道空间的大规模统计特性,并研究允许轨道扭曲或重排的这些结构的等效概念。本研究的目标是将这些方法扩展到尽可能广泛的视角,并应用它们来回答有趣和重要的问题。这些方法有着悠久的历史。他们允许将Bernoulli自同构的Ornstein同构理论扩展到自同构(与C. Hoffman合作),并提供了一个工具,通过轨道转移方法将Z的作用理论的大部分提升到一般离散可服从群的作用(与B. Weiss合作)。这个建议提出了一系列自然的前进方向。自同态逆象对树的推广可以推广到一般树或图的研究以及这些树的各种几何相似性概念。最近的工作指出了有效推广到非奇异和甚至奇异动力学的方法。我们也可以将标记空间和指标空间推广为连续空间,从而将布朗运动作为一致自同态的连续模拟来研究。迄今为止的工作和提出的工作将继续推进我们对可测量动力学和可测量轨道结构的理解。这种结构在数学和其他硬科学中很常见。遍历理论和可测量动力学的根源在于热力学、天体力学、概率论和功能分析。它们在数学中的应用包括代数、组合学、数论、几何、概率论和统计学。在数学之外,在物理、化学、电子工程和遗传学中也有应用。研究生的培养也是这个提议的核心。PI、系里和马里兰大学已经表现出对多样性的坚定承诺,并对学生进行适当的培训和指导

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Rudolph其他文献

An entropy-preserving Dye’s theorem for ergodic actions
  • DOI:
    10.1007/bf02791495
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Daniel Rudolph
  • 通讯作者:
    Daniel Rudolph
Fiducial Marker based Extrinsic Camera Calibration for a Robot Benchmarking Platform
用于机器人基准测试平台的基于基准标记的外部相机校准
A RARE CASE OF PULMONARY SCEDOSPORIUM IN AN IMMUNOCOMPETENT ADULT
  • DOI:
    10.1016/j.chest.2020.08.352
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kulothungan Gunasekaran;Kwesi Amoah;Mandeep Singh Rahi;Daniel Rudolph
  • 通讯作者:
    Daniel Rudolph
RECURRENT BILATERAL PLEURAL EFFUSION DUE TO A PANCREATIC-PLEURAL FISTULA
  • DOI:
    10.1016/j.chest.2020.08.1125
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mandeep Singh Rahi;Kulothungan Gunasekaran;Kwesi Amoah;Elman Urbina;Daniel Rudolph
  • 通讯作者:
    Daniel Rudolph
UNUSUAL PRESENTATION OF PNEUMOMEDIASTINUM AND SUBCUTANEOUS EMPHYSEMA MIMICKING ANGIOEDEMA
  • DOI:
    10.1016/j.chest.2019.08.148
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kulothungan Gunasekaran;Min Qiao;Gini Priyadharshini Jeyashanmugaraja;Christopher Winterbottom;Daniel Rudolph
  • 通讯作者:
    Daniel Rudolph

Daniel Rudolph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Rudolph', 18)}}的其他基金

Pingree Park Dynamics Workshop
Pingree 公园动态研讨会
  • 批准号:
    1010139
  • 财政年份:
    2010
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Standard Grant
Pingree Park Dynamics Workshop
Pingree 公园动态研讨会
  • 批准号:
    0924894
  • 财政年份:
    2009
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Standard Grant
Orbit Methods in Ergodic Theory
遍历理论中的轨道方法
  • 批准号:
    0400491
  • 财政年份:
    2004
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Continuing Grant
Dynamics Conference Support: Convergence Problems in Analysis and Ergodic Theory
动力学会议支持:分析和遍历理论中的收敛问题
  • 批准号:
    0302265
  • 财政年份:
    2003
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Standard Grant
Problems in Measurable Dynamics
可测量动力学问题
  • 批准号:
    0070511
  • 财政年份:
    2000
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Continuing Grant
Ergodic Theory
历经理论
  • 批准号:
    9706829
  • 财政年份:
    1997
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ergodic and combinatorial methods in fractal geometry
分形几何中的遍历和组合方法
  • 批准号:
    2443767
  • 财政年份:
    2020
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Studentship
Investigations in Combinatorics and Number Theory via Ergodic Theoretic Methods
通过遍历理论方法研究组合学和数论
  • 批准号:
    1901453
  • 财政年份:
    2019
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Standard Grant
Stochastic Methods in Fluid Mechanics: Ergodic Properties, Statistical Sampling, and Uncertainty Quantification
流体力学中的随机方法:遍历特性、统计采样和不确定性量化
  • 批准号:
    1816551
  • 财政年份:
    2018
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Standard Grant
Quantum and semi-classical dynamics of random spin chains: models and methods for quantum non-ergodic statistical physics
随机自旋链的量子和半经典动力学:量子非遍历统计物理的模型和方法
  • 批准号:
    1508538
  • 财政年份:
    2016
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Continuing Grant
FRAGMENTATION PROPERTIES OF OXIDIZED PEPTIDES BY ERGODIC & NON-ERGODIC METHODS
氧化肽的遍历断裂特性
  • 批准号:
    8361802
  • 财政年份:
    2011
  • 资助金额:
    $ 9.74万
  • 项目类别:
FRAGMENTATION PROPERTIES OF OXIDIZED PEPTIDES BY ERGODIC & NON-ERGODIC METHODS
氧化肽的遍历断裂特性
  • 批准号:
    8168865
  • 财政年份:
    2010
  • 资助金额:
    $ 9.74万
  • 项目类别:
NSF/CBMS Research Conference in the Mathematical Sciences - "Ergodic Methods in the Theory of Fractals" - "6/18/11 - 06/23/11"
NSF/CBMS 数学科学研究会议 - “分形理论中的遍历方法” - “2011 年 6 月 18 日 - 2011 年 6 月 23 日”
  • 批准号:
    1040754
  • 财政年份:
    2010
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Standard Grant
FRAGMENTATION PROPERTIES OF OXIDIZED PEPTIDES BY ERGODIC & NON-ERGODIC METHODS
氧化肽的遍历断裂特性
  • 批准号:
    7957536
  • 财政年份:
    2009
  • 资助金额:
    $ 9.74万
  • 项目类别:
FRAGMENTATION PROPERTIES OF OXIDIZED PEPTIDES BY ERGODIC & NON-ERGODIC METHODS
氧化肽的遍历断裂特性
  • 批准号:
    7721597
  • 财政年份:
    2008
  • 资助金额:
    $ 9.74万
  • 项目类别:
Orbit Methods in Ergodic Theory
遍历理论中的轨道方法
  • 批准号:
    0400491
  • 财政年份:
    2004
  • 资助金额:
    $ 9.74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了