Semiclassical foundations of single particle and collective phenomena in quantum chaos
量子混沌中单粒子和集体现象的半经典基础
基本信息
- 批准号:178157760
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years the semiclassical theory has experienced considerable progress due to the development of the techniques for quantitative estimations of periodic orbit correlations in classically chaotic systems. The first part of the project focuses on the application of the semiclassical theory to a class of single particle chaotic systems with two types of motion separated from each other by a dynamical barrier. The spectral statistics of such systems is of great interest, since it is anomalous and deviates from standard ensembles of Random Matrix Theory (RMT).The second part of the project deals with the problem of eigenfunction distributions in chaotic systems. In ergodic systems almost all eigenfunctions are equidistributed in phase space, but exceptional sequences of localised states (scars) might still exist. The main objective is to understand the restriction on the possible “strength” of such a localisation in chaotic systems by proving lower bounds on the metric entropies of the corresponding semiclassical measures.The third part of the project is devoted to many-particle systems. The main new phenomenon appearing here is coexistence of (typically) chaotic single particle and (typically) regular collective dynamics. My long term goal is to develop a semiclassical theory for collective spectral excitations which properly catches both dynamical phenomena.
近年来,由于经典混沌系统周期轨道相关性定量估计技术的发展,半经典理论取得了长足的进展。本项目的第一部分着重于将半经典理论应用于一类具有两种运动类型的单粒子混沌系统,这两种运动类型被动力学屏障分开。这类系统的谱统计是非常有趣的,因为它是反常的,偏离了随机矩阵理论(RMT)的标准系综。本项目的第二部分涉及混沌系统的本征函数分布问题。在遍历系统中,几乎所有的本征函数在相空间中都是等分布的,但例外的局域态序列(疤痕)可能仍然存在。主要目标是通过证明相应的半经典测度的度量熵的下界来理解混沌系统中这种局部化的可能“强度”的限制。该项目的第三部分致力于多粒子系统。这里出现的主要新现象是(典型的)混沌单粒子和(典型的)规则集体动力学的共存。我的长期目标是发展一个半经典理论的集体光谱激发,适当捕捉两个动力学现象。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral statistics of nearly unidirectional quantum graphs
近单向量子图的谱统计
- DOI:10.1088/1751-8113/48/34/345101
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:M. Akila;B. Gutkin
- 通讯作者:B. Gutkin
Universality in spectral statistics of open quantum graphs.
开放量子图谱统计的普遍性
- DOI:10.1103/physreve.91.060901
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:B. Gutkin;V.Al. Osipov
- 通讯作者:V.Al. Osipov
Classical foundations of many-particle quantum chaos
多粒子量子混沌的经典基础
- DOI:10.1088/0951-7715/29/2/325
- 发表时间:2016
- 期刊:
- 影响因子:1.7
- 作者:B. Gutkin;V.Al. Osipov
- 通讯作者:V.Al. Osipov
Clustering of periodic orbits in chaotic systems
混沌系统中周期轨道的聚类
- DOI:10.1088/0951-7715/26/1/177
- 发表时间:2012
- 期刊:
- 影响因子:1.7
- 作者:B. Gutkin;V.Al. Osipov
- 通讯作者:V.Al. Osipov
Clustering of Periodic Orbits and Ensembles of Truncated Unitary Matrices
周期轨道的聚类和截断酉矩阵的系综
- DOI:10.1007/s10955-013-0859-9
- 发表时间:2013
- 期刊:
- 影响因子:1.6
- 作者:B. Gutkin;V.Al. Osipov
- 通讯作者:V.Al. Osipov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Boris Gutkin其他文献
Dr. Boris Gutkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
- 批准号:
10537602 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulation of prostate organogenesis by tissue-resident macrophages
组织驻留巨噬细胞对前列腺器官发生的调节
- 批准号:
10555589 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Lineage and transcriptional analysis of sacral neural crest contribution to the enteric nervous system
骶神经嵴对肠神经系统贡献的谱系和转录分析
- 批准号:
10679674 - 财政年份:2023
- 资助金额:
-- - 项目类别:
2023 CAG Triplet Repeat Disorders Gordon Research Conference and Seminar
2023年CAG三重重复疾病戈登研究会议暨研讨会
- 批准号:
10682090 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Spatial and Single Cell Transcriptomics Approach to Understand Neuron-Oligodendrocyte Communication in Human Synaptic Development
了解人类突触发育中神经元-少突胶质细胞通讯的空间和单细胞转录组学方法
- 批准号:
10646970 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identification of an FGF-regulated signaling center in the Groove of Ranvier that controls longitudinal bone growth.
朗飞沟 (Groove of Ranvier) 中控制纵向骨生长的 FGF 调节信号中心的鉴定。
- 批准号:
10667798 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
-- - 项目类别: