Collaborative Research: Dissecting the Role of RSH Extensin in Assembly of the Plant Cell Wall

合作研究:剖析 RSH 延伸蛋白在植物细胞壁组装中的作用

基本信息

  • 批准号:
    0622428
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

Kieliszewski/Cannon Proposal AbstractCOLLABORATIVE RESEARCH: Dissecting the role of RSH extensinin assembly of the plant cell wallThe plant cell wall is a self-assembling structure whose properties arise from correct assembly. Malfunctions in wall assembly can result in the early death of the plant, as occurs with the Arabidopsis rsh embryo lethal mutant, the focus of this proposal. The rsh mutant cannot assemble a functional cell wall in dividing cells because it lacks a specific hydroxyproline-rich glycoprotein, notably a crosslinking extensin designated RSH (ROOT-SHOOT-HYPOCOTYL-DEFECTIVE). This mutant will enable us to dissect the precise rules for wall self-assembly at a molecular level. Mutant plants will be cured of their defect by transferring a range of new RSH genes that might replace the function of the gene that is missing. These complementation experiments with a series of RSH analogs will enable us to define the contributions RSH makes to cell wall assembly. The strategy involves manipulations of the wild-type gene and analogs that will be produced through synthetic genes. RSH is ideally suited for a synthetic gene approach as it is a simple, highly repetitive protein. Certain amino acids, including lysine, tyrosine, serine and histidine may be crucial to assemble RSH and help it crosslink it to form a scaffold in the plant cell wall, therefore genes will be made that give rise to RSH proteins altered in their content of these amino acids and the ability of these genes to cure the mutant will be evaluated. Other designer RSH molecules will lack part of one extreme end of the protein (N-terminus) or the other (C-terminus) as preliminary results indicate one end in particular, the C-terminus of RSH, is required for wall assembly. Finally naturally-occurring RSH, the RSH analogs and Arabidopsis cell walls will be characterized biochemically.Broader Impact: The long term goal of defining the molecular interactions of RSH in the plant cell wall, and the precise roles played by the different sections and amino acids in RSH are relevant to understanding how the wall self-assembles, including understanding plant defense responses and how plant form is created. A broader biotechnological value includes new insights into the rules of supramolecular chemistry; the design of versatile molecules that direct the self-assembly of matter at a molecular level is a key goal of nanotechnology. Finally, as the most abundant biomass, plant cell walls at all levels from forest to food to fibre to fuel, contribute crucially to self-sustaining civilizations.This work also integrates cell wall biology and biochemistry in a way that teaches junior researchers to identify a significant biological problem and set about solving it through collaboration that integrates methods ranging from protein design and characterization to molecular genetics and cell biology. To a greater or lesser extent, both University of Massachusetts and Ohio University have diverse student bodies ensuring that minority students and women form a significant part of the team. Both Dr. Cannon and Dr. Kieliszewski already take part in outreach activities relevant to increasing diversity in the sciences, including outreach to Appalachia.
Kieliszewski/Cannon Proposal AbstractCOLLABORATIVE RESEARCH:剖析RSH extensiin在植物细胞壁组装中的作用植物细胞壁是一种自组装结构,其性质来自于正确的组装。 细胞壁组装的故障会导致植物的早期死亡,就像拟南芥rsh胚胎致死突变体一样,这是本提案的重点。rsh突变体不能在分裂细胞中组装功能性细胞壁,因为它缺乏特异性富含羟脯氨酸的糖蛋白,特别是称为RSH(根-芽-下胚轴-缺陷)的交联延伸蛋白。这个突变体将使我们能够在分子水平上剖析壁自组装的精确规则。通过转移一系列新的RSH基因,突变植物将被治愈,这些基因可能取代缺失基因的功能。这些互补实验与一系列的RSH类似物将使我们能够定义的贡献RSH使细胞壁组装。该策略涉及操纵野生型基因和将通过合成基因产生的类似物。RSH非常适合合成基因的方法,因为它是一种简单,高度重复的蛋白质。 某些氨基酸,包括赖氨酸、酪氨酸、丝氨酸和组氨酸,对于组装RSH并帮助其交联以在植物细胞壁中形成支架可能是至关重要的,因此将制备引起RSH蛋白质在这些氨基酸的含量方面改变的基因,并将评估这些基因治愈突变体的能力。 其他设计的RSH分子将缺乏蛋白质的一个末端(N-末端)或另一个末端(C-末端)的一部分,因为初步结果表明,RSH的一个末端,特别是C-末端,是壁组装所需的。更广泛的影响:长期目标是确定RSH在植物细胞壁中的分子相互作用,以及RSH中不同部分和氨基酸所起的确切作用,这与理解细胞壁如何自组装有关,包括理解植物防御反应和植物形态是如何形成的。更广泛的生物技术价值包括对超分子化学规则的新见解;在分子水平上指导物质自组装的多功能分子的设计是纳米技术的一个关键目标。最后,作为最丰富的生物质,从森林到食物到纤维到燃料的各级植物细胞壁,对自我的贡献至关重要这项工作还整合了细胞壁生物学和生物化学的方式,教导初级研究人员识别一个重要的生物学问题,并通过合作解决它,整合了从蛋白质设计和表征到分子遗传学和细胞遗传学的方法。生物学马萨诸塞州大学和俄亥俄州大学都有不同的学生团体,确保少数民族学生和妇女成为团队的重要组成部分。Cannon博士和Kieliszewski博士都已经参加了与增加科学多样性有关的外联活动,包括到阿巴拉契亚的外联活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maura Cannon其他文献

Organ-specific modulation of gene expression in transgenic plants using antisene RNA
  • DOI:
    10.1007/bf00017722
  • 发表时间:
    1990-07-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Maura Cannon;Jerry Platz;Maureen O'Leary;Cathleen Sookdeo;Frank Cannon
  • 通讯作者:
    Frank Cannon

Maura Cannon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maura Cannon', 18)}}的其他基金

Collaborative Research: Extensin modules comprising self-assembling amphiphiles create scaffolds that nucleate cell wall formation: elucidation of roles and rules
合作研究:包含自组装两亲物的延伸蛋白模块创建使细胞壁形成成核的支架:作用和规则的阐明
  • 批准号:
    0955805
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SGER: Use of the Tetracysteine Tag to Study Localization Dynamics of Hydroxyproline-Rich Glycoproteins (HRGP)
SGER:使用四半胱氨酸标签研究富含羟脯氨酸的糖蛋白 (HRGP) 的定位动力学
  • 批准号:
    0311972
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Biogenesis of Polyhydroxyalkanoate Inclusion Bodies in Bacillus Megaterium
巨大芽孢杆菌中聚羟基脂肪酸酯包涵体的生物发生
  • 批准号:
    9905419
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Molecular Genetic Analysis of Polyhydroxyalkanoate Metabolism and Inclusion-Body Structure in Bacillus Megaterium
巨大芽孢杆菌聚羟基脂肪酸酯代谢和包涵体结构的分子遗传学分析
  • 批准号:
    9604450
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Does Cytonuclear Coevolution Drive Reproductive Isolation? Dissecting the Architecture of Genetic Incompatibility Across a Species Range
合作研究:细胞核协同进化是否会导致生殖隔离?
  • 批准号:
    2140190
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Does Cytonuclear Coevolution Drive Reproductive Isolation? Dissecting the Architecture of Genetic Incompatibility Across a Species Range
合作研究:细胞核协同进化是否会导致生殖隔离?
  • 批准号:
    2140189
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: Dissecting many-body correlations in matter by quantum process tomography
QLC:EAGER:协作研究:通过量子过程断层扫描剖析物质中的多体相关性
  • 批准号:
    1836080
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Expanding the list of determinants of rates of protein evolution and dissecting their molecular bases
合作研究:扩大蛋白质进化速率的决定因素列表并剖析其分子基础
  • 批准号:
    1817667
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
QLC: EAGER: Collaborative Research: Dissecting many-body correlations in matter by quantum process tomography
QLC:EAGER:协作研究:通过量子过程断层扫描剖析物质中的多体相关性
  • 批准号:
    1836075
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Expanding the list of determinants of rates of protein evolution and dissecting their molecular bases
合作研究:扩大蛋白质进化速率的决定因素列表并剖析其分子基础
  • 批准号:
    1817413
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Dissecting photoconversion in fluorescent proteins frame by frame
合作研究:逐帧剖析荧光蛋白中的光转换
  • 批准号:
    1817847
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Dissecting photoconversion in fluorescent proteins frame by frame
合作研究:逐帧剖析荧光蛋白中的光转换
  • 批准号:
    1817949
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Expanding the list of determinants of rates of protein evolution and dissecting their molecular bases
合作研究:扩大蛋白质进化速率的决定因素列表并剖析其分子基础
  • 批准号:
    1818288
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Arabidopsis 2010: Dissecting Cortical Actin Function during Arabidopsis-Pseudomonas Interactions
合作研究:拟南芥 2010:剖析拟南芥-假单胞菌相互作用期间的皮质肌动蛋白功能
  • 批准号:
    1021463
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了