New Techniques for Simulating and Analyzing Biogeochemical Tracers in a Seasonally Varying Global Ocean Models

在季节性变化的全球海洋模型中模拟和分析生物地球化学示踪剂的新技术

基本信息

  • 批准号:
    0623647
  • 负责人:
  • 金额:
    $ 39.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTProposal No.: OCE-0623647Although application of inverse methods and automatic optimization methods to global ocean biogeochemistry models has been quite successful, the steady-state approach fails to capture the essential time-varying seasonality of the ocean. The main limitation of extending automatic optimization to seasonally varying models is the formidable computational costs. In this research, two young PIs from the University of California - Irvine will adapt a state-of-the-art Newton-Krylov method to greatly reduce the computational time needed to spin-up global biogeochemistry models. The resulting fast solver will make it possible to explore parameter space more efficiently and make it feasible to tune uncertain model parameters using automatic optimization methods. They will apply the solver to a hierarchy of global ocean-biogeochemistry models with an increasing level of complexity. In the simplest model, biological uptake will be parameterized diagnostically by restoring surface nutrients to their observed value. In models of intermediate complexity, biological uptake will have a prognostic representation with an explicit treatment of light, temperature, phosphate and iron limitations. The most complex model will be a full ecosystem model that includes representations of the major functional groups involved in ocean biogeochemical cycling. The anticipated outcomes of this research include the fast solver for obtaining the seasonally varying periodic steady states of ocean biogeochemistry models that can be used by the community to greatly reduce the computational costs associated with spinning up global biogeochemistry models for different climate states or with altered parameter values. In addition, their efforts will yield optimized biogeochemistry model parameters that are consistent with climatological and seasonally varying chemical tracer data. In terms of broader impacts, a graduate student and a postdoctoral researcher will obtain training in ocean biogeochemistry and advanced numerical and optimization methods. Undergraduate students will also be exposed to scientific research as part of the NSF-sponsored REU program at UCI. Both PIs will continue participating in outreach programs to provide training in the Earth sciences to elementary teachers from three heavily minority, high-need Southern California school districts (Santa Ana, Costa Mesa, and Compton). The new online biogeochemistry models compatible with the NCAR CCSM ocean-grid, the fast Newton-Krylov solver and parameter optimization routines will be made publicly available to the community.
摘要提案编号: 虽然反演方法和自动优化方法在全球海洋地球化学模式中的应用已经相当成功,但稳态方法未能捕捉到海洋基本的随时间变化的季节性。 将自动优化扩展到季节变化模型的主要限制是巨大的计算成本。 在这项研究中,来自加州大学欧文分校的两名年轻的PI将采用最先进的牛顿-克雷洛夫方法,以大大减少旋转全球地球化学模型所需的计算时间。由此产生的快速求解器将使得能够更有效地探索参数空间,并且使得使用自动优化方法来调整不确定的模型参数变得可行。 他们将把求解器应用于复杂程度越来越高的全球海洋地球化学模型的层次结构。在最简单的模型中,生物吸收将通过将表面营养物恢复到其观测值来诊断参数化。在中等复杂性的模型中,生物吸收将通过明确处理光、温度、磷酸盐和铁限制而具有预后表示。最复杂的模型将是一个完整的生态系统模型,其中包括海洋生物地球化学循环所涉主要功能群的代表。这项研究的预期成果包括快速求解器,用于获得海洋生态地球化学模型的季节性变化周期稳定状态,可供社区使用,以大大降低与旋转不同气候状态或改变参数值的全球生态地球化学模型相关的计算成本。 此外,他们的努力将产生优化的地球化学模型参数,与气候和季节性变化的化学示踪剂数据相一致。在更广泛的影响方面,一名研究生和一名博士后研究员将获得海洋地球化学和先进的数值和优化方法方面的培训。本科生也将接触到科学研究作为NSF赞助的REU计划在UCI的一部分。 这两个PI将继续参与外展计划,为来自三个少数民族聚居、需求量大的南加州学区(圣安娜、科斯塔梅萨和康普顿)的小学教师提供地球科学培训。与NCAR CCSM海洋网格兼容的新的在线地球化学模型,快速Newton-Krylov求解器和参数优化程序将向社区公开。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francois Primeau其他文献

Francois Primeau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francois Primeau', 18)}}的其他基金

Inferring large-scale patterns of nutrient regeneration in the ocean using a global biogeochemical inverse model
使用全球生物地球化学反演模型推断海洋中养分再生的大规模模式
  • 批准号:
    1436922
  • 财政年份:
    2014
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
Collaborative research: Constraining the global ocean nitrogen cycle with multiple tracers in a biogeochemical inverse model
合作研究:在生物地球化学反演模型中使用多种示踪剂约束全球海洋氮循环
  • 批准号:
    1131768
  • 财政年份:
    2011
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Basin Modes in Pacing Pacific Decadal Variability
合作研究:盆地模式在太平洋年代际变化中的作用
  • 批准号:
    0928395
  • 财政年份:
    2009
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
Collaborative Research: New Diagnostics of Water-Mass Ventilation Estimated from Tracer Data
合作研究:根据示踪剂数据估算水团通风的新诊断方法
  • 批准号:
    0726871
  • 财政年份:
    2007
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
A Modeling Study of the Intrinsic Variability of the Gulf-Stream and Kuroshio Extension Systems
湾流和黑潮扩展系统内在变异性的模拟研究
  • 批准号:
    0221516
  • 财政年份:
    2002
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
  • 批准号:
    10087309
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
  • 批准号:
    EP/Y035933/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 39.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了