Molecular Recognition in Microarrays: A Computer Simulation Study
微阵列中的分子识别:计算机模拟研究
基本信息
- 批准号:0625888
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTMolecular Recognition in Microarrays: A Computer Simulation StudyProject Summary:DNA microarrays have revolutionized the way that biological research is done, enablingthe analysis of thousands of genes in a single experiment. Microarrays are being used in gene profiling, toxicogenomics, drug discovery, pathway biochemistry, and legal identification. Even though this powerful technique has been enthusiastically adopted by the scientific community, it is far from mature. Considerable uncertainty exists about how to design microarrays for maximum sensitivity and specificity. A fundamental understanding of the interplay between the various factors that affect microarray performance is needed. The proposed research has two basic objectives. The first objective is to develop guidelines for designing microarrays with maximum sensitivity and specificity. This will be accomplished by performing Monte Carlo simulations of the adsorption and molecular recognition of lattice model DNA target molecules by lattice model probe molecules tethered to a microarray surface. DNA is basically at the nano-scale. The factors that affect the sensitivity and specificity of microarrays will be systematically explored including: the probe sequence, length and concentration; the target sequence, length and concentration; the nucleotide compositions of the probe and target, the spacer length, and the temperature. Results from this study will be compared to those of our experimental collaborator, Professor Stefan Franzen and to data in the literature. The second objective is to develop a new computational tool that can be used to improve accuracy in interpreting microarray data. This will be accomplished by building a new intermediate resolution model of DNA molecules and then performing implicit-solvent discontinuous molecular dynamics simulations of the adsorption of target model DNA molecules (both perfect match and mismatch) on microarray surfaces containing probe model DNA molecules. A multiscale modeling approach will be used to extract the energetic and geometrical parameters in the model from potentials of mean force calculated during explicit-solvent CHARMM simulations. A sub-objective here is to quantify the difference between hybridization on surfaces and hybridization in bulk, and then to use this information to modify and improve the bulk-based theoretical models currently used to correlate microarray data on perfect matches and mismatches. Results from this part of the project will be compared to experimental results of our collaborator Professor Erdogan Gulari. Taken together these two projects should give us a goodphysical picture of molecular recognition in DNA microarrays. The broader impacts of the proposed research are the following. The proposed research could have an impact on the world of medical research. DNA microarrays are heavily used in cancer research today as researchers struggle to identify genes that are expressed in tumors, or toidentify genetic markers (oncogenes) that could serve as potential targets for chemotherapy. In addition to training two graduate students, research and education will be fostered by the following two activities. (1) Hybridization of DNA on microarrays will be used as the basis for a number of examples that will be developed for the PI's undergraduate chemical engineering thermodynamics course, and inserted into an undergraduate chemical engineering thermodynamics textbook that she is writing. (2) A power point presentation describing the basics of genomics and culminating in a description of DNA microarrays will be prepared for dissemination via the web.The PI will continue her considerable but informal activities to broaden the opportunitiesfor women. Since she was one of the first women to be appointed to a chemical engineering faculty in the US, the PI is now viewed as a role model by younger members of the academic community, and hence serves as an informal mentor to many women students (undergraduate and graduate) at NCSU, as well as to women faculty and prospective women faculty across the US. The PI attracts a disproportionate number of women graduate students to her research group; of the 16 graduate students that she has advised over the past five years, 9 have been women.
摘要:DNA微阵列的分子识别:计算机模拟研究项目概述:DNA微阵列已经彻底改变了生物学研究的方式,使在一个实验中分析数千个基因成为可能。微阵列被用于基因分析、毒理基因组学、药物发现、途径生物化学和法律的鉴定。尽管这种强大的技术已经被科学界热情地采用,但它还远未成熟。关于如何设计最大灵敏度和特异性的微阵列存在相当大的不确定性。需要对影响微阵列性能的各种因素之间的相互作用有一个基本的了解。 拟议的研究有两个基本目标。第一个目标是为设计具有最大灵敏度和特异性的微阵列制定指导方针。这将通过进行蒙特卡罗模拟的吸附和分子识别的晶格模型DNA靶分子的晶格模型探针分子拴到微阵列表面。DNA基本上是纳米级的。 系统地探讨了影响微阵列灵敏度和特异性的因素,包括:探针序列、长度和浓度;靶序列、长度和浓度;探针和靶的核苷酸组成、间隔区长度和温度。这项研究的结果将与我们的实验合作者Stefan Franzen教授的结果以及文献中的数据进行比较。第二个目标是开发一种新的计算工具,可用于提高解释微阵列数据的准确性。这将通过建立一个新的DNA分子的中间分辨率模型,然后进行隐式溶剂不连续分子动力学模拟的吸附目标模型DNA分子(完美匹配和错配)的微阵列表面含有探针模型DNA分子。一个多尺度建模方法将被用来提取模型中的能量和几何参数从显式溶剂CHARMM模拟计算的平均力的潜力。这里的一个子目标是量化表面杂交和批量杂交之间的差异,然后使用这些信息来修改和改进目前用于将微阵列数据与完美匹配和错配相关联的基于批量的理论模型。该项目这一部分的结果将与我们的合作者Erdogan Gulari教授的实验结果进行比较。这两个项目合在一起应该能给我们一个DNA微阵列中分子识别的良好物理图像。 拟议研究的更广泛影响如下。这项拟议中的研究可能会对医学研究领域产生影响。DNA微阵列在当今癌症研究中被大量使用,因为研究人员正在努力识别肿瘤中表达的基因,或者识别可能作为化疗潜在靶点的遗传标记(癌基因)。 除了培训两名研究生外,还将通过以下两项活动促进研究和教育。(1)DNA在微阵列上的杂交将被用作PI的本科化学工程热力学课程开发的一些示例的基础,并插入到她正在编写的本科化学工程热力学教科书中。(2)将准备一份介绍基因组学基础知识并最终介绍DNA微阵列的幻灯片,以便通过网络传播。PI将继续开展大量非正式活动,以扩大妇女的机会。由于她是第一批被任命为化学工程学院在美国的女性之一,PI现在被视为学术界的年轻成员的榜样,因此作为一个非正式的导师,许多女学生(本科生和研究生)在NCSU,以及女性教师和未来的女性教师在美国各地。 PI吸引了不成比例的女研究生加入她的研究小组;在过去五年中,她指导的16名研究生中,有9名是女性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carol Hall其他文献
The relationship between visual memory and rider expertise in a show-jumping context
- DOI:
10.1016/j.tvjl.2009.03.007 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
Carol Hall;Charlotte Liley;Jack Murphy;David Crundall - 通讯作者:
David Crundall
Equine conflict behaviors in dressage and their relationship to performance evaluation
- DOI:
10.1016/j.jveb.2022.07.011 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Kathryn L. Hamilton;Bryony E. Lancaster;Carol Hall - 通讯作者:
Carol Hall
Safety in numbers 5: Evaluation of computer-based authentic assessment and high fidelity simulated OSCE environments as a framework for articulating a point of registration medication dosage calculation benchmark
- DOI:
10.1016/j.nepr.2012.10.009 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:
- 作者:
Mike Sabin;Keith W. Weeks;David A. Rowe;B. Meriel Hutton;Diana Coben;Carol Hall;Norman Woolley - 通讯作者:
Norman Woolley
Carol Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carol Hall', 18)}}的其他基金
EFRI E3P: Massive Microplastics Remediation using Novel Microcleaners and Microbiome Processing Accelerated by Artificial Intelligence
EFRI E3P:使用人工智能加速的新型微型清洁剂和微生物组处理进行大规模微塑料修复
- 批准号:
2029327 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Element: Computational Toolkit to Discover Peptides that Self-assemble into User-selected Structures
Element:用于发现自组装成用户选择的结构的肽的计算工具包
- 批准号:
1931430 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Computational Design of Peptide Ligands for the Bioseparation of "Fab" Antibody Fragments
EAGER:用于“Fab”抗体片段生物分离的肽配体的计算设计
- 批准号:
1830272 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAISE: Design of co-assembling peptides as recombinant protein fusion tags for integrating enzymes into supramolecular hydrogels
RAISE:设计共组装肽作为重组蛋白融合标签,用于将酶整合到超分子水凝胶中
- 批准号:
1743432 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
UNS: Computational Design of Generic Underwater Adhesives based on Conjugating DOPA-Containing Polymers and Amyloid-Forming Peptides
UNS:基于含多巴聚合物和淀粉样蛋白形成肽的通用水下粘合剂的计算设计
- 批准号:
1512059 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Predicting the Nature of the Protein Corona: From Fundamental Modeling to Phenomenological Descriptors
预测蛋白质电晕的性质:从基本模型到现象学描述
- 批准号:
1236053 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Design of Multifunctional Doubly-Fusogenic Liposomes to Deliver Therapeutics and Diagnostics
合作研究:设计多功能双融合脂质体以提供治疗和诊断
- 批准号:
1206943 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CDI Type II Computational Discovery of Unusual Nucleic-Acid-Based Nanostructures
CDI II 型计算发现不寻常的基于核酸的纳米结构
- 批准号:
0835794 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Computer Simulation Studies of the Thermodynamics and Kinetics of Protein Folding and Aggregation
蛋白质折叠和聚集的热力学和动力学的计算机模拟研究
- 批准号:
9704044 - 财政年份:1997
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Aqueous Two-Phase Extraction: Theory and Experiment
水相两相萃取:理论与实验
- 批准号:
9208590 - 财政年份:1992
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
基于Recognition-VR 虚拟现实的“家庭-社区-医院三向联动”轻度认知障碍防治模式研究
- 批准号:2021JJ60094
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
World in your hand: Investigating the underlying mechanism of thermal material recognition and its interaction with multisensory information
手中的世界:研究热材料识别的基本机制及其与多感官信息的相互作用
- 批准号:
23K24934 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
Class-Balanced Contrastive Learning for Multimodal Recognition
多模态识别的类平衡对比学习
- 批准号:
24K20831 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Circuit and cellular analysis of the lateral entorhinal cortex in associative recognition memory
联想识别记忆中外侧内嗅皮层的电路和细胞分析
- 批准号:
BB/Y006402/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: Decoding the Code of Glycan-Collectin Interactions: Computational Engineering of Surfactant Proteins for Tailored Glycan Recognition
职业:解码聚糖-收集素相互作用的密码:用于定制聚糖识别的表面活性剂蛋白的计算工程
- 批准号:
2338401 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Mechanism for CD8+ T cell recognition and removal of senescent tissue cells during ageing
衰老过程中CD8 T细胞识别和清除衰老组织细胞的机制
- 批准号:
BB/Y003365/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant