Collaborative Research. Biologically-Generated Flow by Plankton: Numerical Simulations and Experiments

合作研究。

基本信息

  • 批准号:
    0625898
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

PROPOSAL NO.: CTS-0625976 / 0625898PRINCIPAL INVESTIGATOR: F. SOTIROPOULOS / J. YENINSTITUTION: U OF MINNESOTA / GEORGIA TECH.BIOLOGICALLY-GENERATED FLOW BY PLANKTON: NUMERICAL SIMULATIONS AND EXPERIMENTS This grant supports an interdisciplinary, collaborative research effort aimed at integrating recent advancements in experimental biological oceanography and computational fluid dynamics (CFD) modeling to develop and validate biologically realistic CFD models of freely swimming planktonic micro-organisms. Three different organisms will be studied because they are known to rely on different modes of aquatic propulsion: flapping for the snail and paddling for the krill (continuous paddling) and the copepod (bursts of thrust during escape). Also their respective flow regimes collectively span the range from viscosity-dominated to transitional, inertial-dominated flows. High resolution imaging using Schlieren optics and light microscopy will provide body and appendage geometry and kinematics reconstruction for each organism. This information will be used as input to generate anatomically realistic computational models, which will include the organism body and all swimming appendages. A multi-scale approach will be developed to account for the presence of microscopic hairs in organism appendages. High resolution, hair-resolving CFD simulations will be carried for individual hairy appendages to quantify their leakiness as a function of the local Reynolds number. This information will be used to model at the macroscopic (full organism) scale each hairy appendage as flexible, continuous but leaky surface whose average leakiness varies in the manner determined from the hair-resolving simulations. Flow visualization by 2-dimensional infra-red particle image velocimetry will be carried out to obtain highly resolved planar velocity fields around both tethered and freely swimming plankton. Large volume observations of isolated individuals and groups of individuals will provide the 3D trajectories that will yield the speed and acceleration exhibited by freely swimming plankton. These measurements will be used to fine-tune and validate the computational model. The proposed CFD model of plankton swimming will provide biological oceanographers with a novel and powerful research tool that can shed new light into the response of plankton to small-scale biological-physical-chemical signals in the sea. The proposed model will also yield answers to many important biological questions pertaining to the hydrodynamics of plankton swimming and the mechanisms such microscopic organisms have evolved to leverage viscous forces to produce thrust and achieve often striking levels of propulsive performance. Both graduate and undergraduate students will be involved in this project, whose the unique nature will provide the students with a rich, interdisciplinary research experience. Students will develop unique skills to become leaders in today's evolving research landscape that emphasizes and relies on the integration of bio-sciences with engineering. Interdisciplinary training will be further enhanced by on-going educational efforts, in particular the Georgia Tech NSF IGERT and REU programs in the area of aquatic chemical and hydromechanical signaling.
建议没有。项目编号:cts-0625976 / 0625898首席研究员:f. sotiropoulos / j. yenen研究机构:明尼苏达大学/乔治亚理工大学浮游生物产生流;该基金支持一项跨学科的合作研究,旨在整合实验生物海洋学和计算流体动力学(CFD)建模的最新进展,以开发和验证自由游动的浮游微生物的生物逼真的CFD模型。研究人员将研究三种不同的生物,因为已知它们依靠不同的水生推进模式:蜗牛的拍打,磷虾的划水(连续划水)和桡足类动物(在逃跑时的爆破力)。此外,它们各自的流动形式共同跨越了从粘度主导到过渡、惯性主导的流动范围。使用纹影光学和光显微镜的高分辨率成像将为每个生物体提供身体和附体的几何和运动学重建。这些信息将被用作输入来生成解剖学上真实的计算模型,其中将包括生物体和所有游动的附属物。将开发一种多尺度的方法来解释有机体附属物中微观毛发的存在。将对单个毛状附属物进行高分辨率、毛发分辨的CFD模拟,以量化它们的泄漏作为局部雷诺数的函数。这些信息将用于在宏观(整个生物体)尺度上建立模型,每个毛发附属物都是灵活的,连续的,但有泄漏的表面,其平均泄漏率根据毛发解析模拟确定的方式而变化。利用二维红外粒子图像测速技术进行流动可视化,以获得悬浮浮游生物和自由游动浮游生物周围的高分辨率平面速度场。对孤立个体和个体群体的大量观察将提供三维轨迹,从而得出浮游生物自由游动时所表现出的速度和加速度。这些测量将用于微调和验证计算模型。所提出的浮游生物游泳的CFD模型将为生物海洋学家提供一种新颖而强大的研究工具,可以为浮游生物对海洋中小规模生物-物理-化学信号的反应提供新的思路。所提出的模型还将为许多重要的生物学问题提供答案,这些问题涉及浮游生物游泳的流体动力学,以及这些微生物已经进化到利用粘性力产生推力并实现通常惊人的推进性能水平的机制。研究生和本科生都将参与这个项目,其独特的性质将为学生提供丰富的跨学科研究经验。学生将培养独特的技能,成为当今不断发展的研究领域的领导者,强调并依赖于生物科学与工程的整合。跨学科培训将通过持续的教育努力进一步加强,特别是佐治亚理工学院NSF的IGERT和REU项目在水生化学和流体机械信号领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeannette Yen其他文献

Evaluating Biological Systems for Their Potential in Engineering Design
评估生物系统在工程设计中的潜力
  • DOI:
    10.3968/j.ans.1715787020100302.003
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeannette Yen;Michael E. Helms;Swaroop Vattam;Ashok K. Goel
  • 通讯作者:
    Ashok K. Goel
Following the invisible trail: kinematic analysis of mate-tracking in the copepod Temora longicornis.
追踪看不见的踪迹:桡足类长角动物配偶追踪的运动学分析。
Copepod avoidance of thin chemical layers of harmful algal compounds
桡足类避免有害藻类化合物的薄化学层
  • DOI:
    10.1002/lno.10752
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    A. True;Donald R. Webster;M. Weissburg;Jeannette Yen
  • 通讯作者:
    Jeannette Yen
The fluid physics of signal perception by mate-tracking copepods.
配偶追踪桡足类信号感知的流体物理学。
Biologically Inspired Design : A Tool for Interdisciplinary Education
生物启发设计:跨学科教育的工具
  • DOI:
    10.1201/b11230-15
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Jeannette Yen;M. Weissburg
  • 通讯作者:
    M. Weissburg

Jeannette Yen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeannette Yen', 18)}}的其他基金

Collaborative Research: Dynamic similarity or size proportionality? Sensory ecological adaptations of Euchaeta to viscosity
协作研究:动态相似性还是大小比例?
  • 批准号:
    2023675
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification
合作研究:翼足类动物游泳行为作为海洋酸化的生物测定
  • 批准号:
    1246296
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Biologically !nspired Design: A novel interdisciplinary biology-engineering curriculum
生物启发设计:新颖的跨学科生物工程课程
  • 批准号:
    1022778
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Testing the turbulence avoidance hypothesis
检验避免湍流假设
  • 批准号:
    0928491
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Biologically !nspired design: A Novel Interdisciplinary Biology-Engineering Curriculum
受生物学启发的设计:新颖的跨学科生物工程课程
  • 批准号:
    0737041
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Fluid mechanical and chemical cues in Thin Layers: Effects of scale and individual behavior
薄层中的流体机械和化学线索:规模和个体行为的影响
  • 批准号:
    0728238
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Dynamic Similarity or Size Proportionality? Adaptations of a Polar Copepod.
动态相似性还是大小比例?
  • 批准号:
    0324539
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Fragmentation of Marine Snow by Swimming Macrozooplankton
合作研究:游泳大型浮游动物对海洋雪的破碎
  • 批准号:
    0296101
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Fragmentation of Marine Snow by Swimming Macrozooplankton
合作研究:游泳大型浮游动物对海洋雪的破碎
  • 批准号:
    9907360
  • 财政年份:
    1999
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Signal Recognition by Zooplankton
合作研究:浮游动物的信号识别
  • 批准号:
    9723960
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    2023434
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
  • 批准号:
    2023442
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Biologically-driven island-building during sea-level rise and its implications for promoting resilient coastlines
合作研究:海平面上升期间生物驱动的岛屿建设及其对促进海岸线恢复力的影响
  • 批准号:
    2032130
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Biologically-driven island-building during sea-level rise and its implications for promoting resilient coastlines
合作研究:海平面上升期间生物驱动的岛屿建设及其对促进海岸线恢复力的影响
  • 批准号:
    2032129
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conformational Equilibria of Biologically Important Saccharides and Related Biomolecules
合作研究:具有重要生物学意义的糖类和相关生物分子的构象平衡
  • 批准号:
    2002625
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Conformational Equilibria of Biologically Important Saccharides and Related Biomolecules
合作研究:具有重要生物学意义的糖类和相关生物分子的构象平衡
  • 批准号:
    2002628
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Near-bed flow, turbulence, and emergent hydrodynamics of biologically-conditioned labile river channels
合作研究:生物条件不稳定河道的近床流、湍流和紧急水动力
  • 批准号:
    1659518
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Near-bed flow, turbulence, and emergent hydrodynamics of biologically-conditioned labile river channels
合作研究:生物条件不稳定河道的近床流、湍流和紧急水动力
  • 批准号:
    1659909
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Incorporating Biologically-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
  • 批准号:
    1704938
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimization of metal attenuation in biologically-active remediation systems
合作研究:生物活性修复系统中金属衰减的优化
  • 批准号:
    1743046
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了