Collaborative Research. Biologically-Generated Flow by Plankton: Numerical Simulations and Experiments
合作研究。
基本信息
- 批准号:0625976
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROPOSAL NO.: CTS-0625976 / 0625898PRINCIPAL INVESTIGATOR: F. SOTIROPOULOS / J. YENINSTITUTION: U OF MINNESOTA / GEORGIA TECH.BIOLOGICALLY-GENERATED FLOW BY PLANKTON: NUMERICAL SIMULATIONS AND EXPERIMENTS This grant supports an interdisciplinary, collaborative research effort aimed at integrating recent advancements in experimental biological oceanography and computational fluid dynamics (CFD) modeling to develop and validate biologically realistic CFD models of freely swimming planktonic micro-organisms. Three different organisms will be studied because they are known to rely on different modes of aquatic propulsion: flapping for the snail and paddling for the krill (continuous paddling) and the copepod (bursts of thrust during escape). Also their respective flow regimes collectively span the range from viscosity-dominated to transitional, inertial-dominated flows. High resolution imaging using Schlieren optics and light microscopy will provide body and appendage geometry and kinematics reconstruction for each organism. This information will be used as input to generate anatomically realistic computational models, which will include the organism body and all swimming appendages. A multi-scale approach will be developed to account for the presence of microscopic hairs in organism appendages. High resolution, hair-resolving CFD simulations will be carried for individual hairy appendages to quantify their leakiness as a function of the local Reynolds number. This information will be used to model at the macroscopic (full organism) scale each hairy appendage as flexible, continuous but leaky surface whose average leakiness varies in the manner determined from the hair-resolving simulations. Flow visualization by 2-dimensional infra-red particle image velocimetry will be carried out to obtain highly resolved planar velocity fields around both tethered and freely swimming plankton. Large volume observations of isolated individuals and groups of individuals will provide the 3D trajectories that will yield the speed and acceleration exhibited by freely swimming plankton. These measurements will be used to fine-tune and validate the computational model. The proposed CFD model of plankton swimming will provide biological oceanographers with a novel and powerful research tool that can shed new light into the response of plankton to small-scale biological-physical-chemical signals in the sea. The proposed model will also yield answers to many important biological questions pertaining to the hydrodynamics of plankton swimming and the mechanisms such microscopic organisms have evolved to leverage viscous forces to produce thrust and achieve often striking levels of propulsive performance. Both graduate and undergraduate students will be involved in this project, whose the unique nature will provide the students with a rich, interdisciplinary research experience. Students will develop unique skills to become leaders in today's evolving research landscape that emphasizes and relies on the integration of bio-sciences with engineering. Interdisciplinary training will be further enhanced by on-going educational efforts, in particular the Georgia Tech NSF IGERT and REU programs in the area of aquatic chemical and hydromechanical signaling.
提案编号: CTS-0625976 /0625898主要制造商:F. SOTIROPOULOS / J. YEN机构: U明尼苏达州/格鲁吉亚技术。浮游生物产生的流动:数值模拟和实验该补助金支持跨学科的合作研究工作,旨在整合实验生物海洋学和计算流体动力学(CFD)建模的最新进展,以开发和验证自由游泳的浮游微生物的生物现实的CFD模型。三种不同的生物将被研究,因为它们依赖于不同的水上推进模式:蜗牛的拍打和磷虾的划水(连续划水)和桡足类(逃跑时的推力爆发)。此外,它们各自的流态共同跨越从粘度主导到过渡、惯性主导的流的范围。使用纹影光学和光学显微镜的高分辨率成像将为每个生物体提供身体和附属物的几何形状和运动学重建。这些信息将被用作输入,以生成解剖学上逼真的计算模型,其中将包括生物体和所有游泳附肢。一个多尺度的方法将被开发来解释微生物附属物中存在的微观毛发。高分辨率,毛发解析CFD模拟将进行个别毛茸茸的附属物,以量化其泄漏作为当地雷诺数的函数。该信息将用于在宏观(完整生物体)尺度上将每个多毛附属物建模为柔性、连续但泄漏的表面,其平均泄漏以从毛发解析模拟确定的方式变化。流动可视化的二维红外粒子图像测速仪将进行获得高分辨率的平面速度场周围的系留和自由游动的浮游生物。对孤立个体和群体的大量观测将提供3D轨迹,这些轨迹将产生自由游动的浮游生物所表现出的速度和加速度。这些测量将用于微调和验证计算模型。浮游生物游动的CFD模型将为生物海洋学家提供一种新颖而强大的研究工具,可以为浮游生物对海洋中小尺度生物-物理-化学信号的响应提供新的思路。所提出的模型也将产生许多重要的生物学问题的答案有关的浮游生物游泳的流体动力学和机制,这样的微观生物已经发展到利用粘性力产生推力,并实现往往惊人的推进性能水平。 研究生和本科生都将参与这个项目,其独特的性质将为学生提供丰富的跨学科研究经验。学生将发展独特的技能,成为当今不断发展的研究领域的领导者,强调并依赖于生物科学与工程的整合。跨学科培训将进一步加强正在进行的教育工作,特别是格鲁吉亚技术NSF IGERT和REU计划在水生化学和水力机械信号领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fotis Sotiropoulos其他文献
IDeC(<em>k</em>): A new velocity reconstruction algorithm on arbitrarily polygonal staggered meshes
- DOI:
10.1016/j.jcp.2011.04.039 - 发表时间:
2011-07-20 - 期刊:
- 影响因子:
- 作者:
Ganesh Natarajan;Fotis Sotiropoulos - 通讯作者:
Fotis Sotiropoulos
A deep-learning approach for 3D realization of mean wake flow of marine hydrokinetic turbine arrays
- DOI:
10.1016/j.egyr.2024.08.047 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Zexia Zhang;Fotis Sotiropoulos;Ali Khosronejad - 通讯作者:
Ali Khosronejad
Large eddy simulation of a utility-scale horizontal axis turbine with woody debris accumulation under live bed conditions
- DOI:
10.1016/j.renene.2024.122110 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Mustafa Meriç Aksen;Hossein Seyedzadeh;Mehrshad Gholami Anjiraki;Jonathan Craig;Kevin Flora;Christian Santoni;Fotis Sotiropoulos;Ali Khosronejad - 通讯作者:
Ali Khosronejad
Experimentally Validated Hemodynamics Simulations of Mechanical Heart Valves in Three Dimensions
- DOI:
10.1007/s13239-011-0077-z - 发表时间:
2011-12-14 - 期刊:
- 影响因子:1.800
- 作者:
Vinh-Tan Nguyen;Yee Han Kuan;Po-Yu Chen;Liang Ge;Fotis Sotiropoulos;Ajit P. Yoganathan;Hwa Liang Leo - 通讯作者:
Hwa Liang Leo
Fotis Sotiropoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fotis Sotiropoulos', 18)}}的其他基金
UNS: Collaborative Research: Crossing the boundary: motion of solid objects across air-liquid interfaces
UNS:协作研究:跨越边界:固体物体跨气液界面的运动
- 批准号:
1509071 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Crossing the boundary: motion of solid objects across air-liquid interfaces
UNS:协作研究:跨越边界:固体物体跨气液界面的运动
- 批准号:
1622314 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
PFI: BIC- The Roosevelt Island Tidal Energy Project: Optimizing Novel Hydro-Kinetic Renewable Energy Systems via State-of-the-Art Computational Fluid Dynamics Research
PFI:BIC-罗斯福岛潮汐能项目:通过最先进的计算流体动力学研究优化新型水动力可再生能源系统
- 批准号:
1318201 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Renovation of the St. Anthony Falls Laboratory-University of Minnesota, for research in energy and environmental sustainability
改造明尼苏达大学圣安东尼瀑布实验室,用于能源和环境可持续性研究
- 批准号:
0963306 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Based Modeling of Bridge Foundation Scour: Numerical Simulations and Experiments
合作研究:基于物理的桥梁基础冲刷建模:数值模拟和实验
- 批准号:
0738726 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Career: Advanced Numerical Modeling of Bridge Foundation Scour
职业:桥梁基础冲刷高级数值模拟
- 批准号:
9875691 - 财政年份:1999
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
2023434 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Novel imaging, physiology and numerical approaches for understanding biologically mediated, unsteady sinking in marine diatoms
NSFGEO-NERC:合作研究:用于了解海洋硅藻生物介导的不稳定下沉的新颖成像、生理学和数值方法
- 批准号:
2023442 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Biologically-driven island-building during sea-level rise and its implications for promoting resilient coastlines
合作研究:海平面上升期间生物驱动的岛屿建设及其对促进海岸线恢复力的影响
- 批准号:
2032130 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Biologically-driven island-building during sea-level rise and its implications for promoting resilient coastlines
合作研究:海平面上升期间生物驱动的岛屿建设及其对促进海岸线恢复力的影响
- 批准号:
2032129 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Conformational Equilibria of Biologically Important Saccharides and Related Biomolecules
合作研究:具有重要生物学意义的糖类和相关生物分子的构象平衡
- 批准号:
2002625 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Conformational Equilibria of Biologically Important Saccharides and Related Biomolecules
合作研究:具有重要生物学意义的糖类和相关生物分子的构象平衡
- 批准号:
2002628 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Incorporating Biologically-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
- 批准号:
1704938 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Near-bed flow, turbulence, and emergent hydrodynamics of biologically-conditioned labile river channels
合作研究:生物条件不稳定河道的近床流、湍流和紧急水动力
- 批准号:
1659518 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Near-bed flow, turbulence, and emergent hydrodynamics of biologically-conditioned labile river channels
合作研究:生物条件不稳定河道的近床流、湍流和紧急水动力
- 批准号:
1659909 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Optimization of metal attenuation in biologically-active remediation systems
合作研究:生物活性修复系统中金属衰减的优化
- 批准号:
1743046 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant