A Hybrid KR&R/Information Theoretic Model for Relationship Simplification

混合型 KR

基本信息

  • 批准号:
    0634849
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-15 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Evidence chaining and "dipping" are powerful analytical paradigms to explore entities and their connections in semantically rich, multi-source databases. Starting from a small set of seeds such as known suspects or the result of some exploratory query, an analyst can draw from various data sources to explore the space of entities connected to these seeds via any number of relations. However, since there are often many relations, facts, attributes and transactions associated with each entity, they can be richly interconnected which can quickly lead to very large numbers of objects linked to the initial seeds.Relationship simplification is one approach to reduce this space effectively and provide a more abstract view for analysts by (1) reducing the number of different relations through abstraction and normalization, and (2) focusing on strongly and relevantly connected objects by computing a measure of connection strength or relevance. To address (1) we propose to use knowledge representation and reasoning (KR&R) technology, which allows us to represent evidence at very high fidelity, utilize sophisticated ontologies and domain theories, have a natural means to represent abstraction and meta-knowledge, map easily between different representations and exploit powerful inference procedures to make implicit relationships explicit. To address (2) we need to consolidate and aggregate all relations between two objects, statistically contrast them with connections to and among other entities and compute a measure of closeness or interestingness to filter out irrelevant or uninteresting objects and connections. To dynamically compute connection strength, we propose to use an information theoretical model to determine the weight of each relation as well as to take the context of a relationship into account. This will allow us to aggregate all relations between objects and measure closeness between them to simplify a large data space and compress it into a more abstract, simplified view.We will integrate the Relationship Simplifier with the BLACKBOOK system for uniform access to data and results and communication with other components. In addition, our components can also access relational data directly from one or more relational databases which is useful when dealing with very large datasets.
证据链和“浸渍”是在语义丰富的多源数据库中探索实体及其联系的强大分析范例。从一小组种子开始,例如已知的嫌疑人或一些探索性查询的结果,分析师可以从各种数据源中提取数据,以探索通过任意数量的关系连接到这些种子的实体的空间。然而,由于经常存在与每个实体相关联的许多关系、事实、属性和事务,它们可以丰富地相互关联,从而快速地导致非常大量的对象链接到初始种子。关系简化是通过(1)通过抽象和规范化来减少不同关系的数量,以及(2)通过计算连接强度或关联性的度量来关注强关联对象,从而有效地减少这种空间并为分析者提供更抽象的视图的一种方法。为了解决(1)我们建议使用知识表示和推理(KR&R)技术,它允许我们以非常高的保真度表示证据,利用复杂的本体和领域理论,具有表示抽象和元知识的自然方法,容易在不同表示之间映射,并利用强大的推理过程来显式地显示隐含关系。为了解决(2),我们需要合并和聚合两个对象之间的所有关系,在统计上将它们与其他实体之间的联系进行对比,并计算亲密度或兴趣度的度量,以筛选出不相关或不感兴趣的对象和联系。为了动态计算连接强度,我们建议使用信息论模型来确定每个关系的权重,并考虑关系的上下文。这将使我们能够聚合对象之间的所有关系并测量它们之间的密切程度,以简化大型数据空间,并将其压缩为更抽象、简化的视图。我们将把关系简化程序与Blackbook系统集成,以便统一访问数据和结果并与其他组件进行通信。此外,我们的组件还可以直接从一个或多个关系数据库访问关系数据,这在处理非常大的数据集时很有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Herbert Schorr其他文献

Herbert Schorr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Herbert Schorr', 18)}}的其他基金

NetSE: Small: Complex Adaptive Networks: Generative Models and Statistical Analysis
NetSE:小型:复杂自适应网络:生成模型和统计分析
  • 批准号:
    0916534
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Intelligent Interactions with Risk Communication for Risk Mitigation
协作研究:通过风险沟通进行智能交互以降低风险
  • 批准号:
    0943505
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NICE Application Software Consortium-Workshop (SWCON-WS)
NICE 应用软件联盟研讨会 (SWCON-WS)
  • 批准号:
    0739532
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SGER: NEON System Design, Phase II (NEON-SYSD-II)
SGER:NEON 系统设计,第二阶段 (NEON-SYSD-II)
  • 批准号:
    0645899
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS-FIND: Informational Meeting on NeTS
NetS-FIND:NetS 信息会议
  • 批准号:
    0606829
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GSE/RES: Promoting Competence in Mathematics Through Collaboration, Reflection, and Role Models
GSE/RES:通过协作、反思和榜样提高数学能力
  • 批准号:
    0429125
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SCIWORK: SCI PI Workshop; Washington, DC; First Quarter 2004
SCIWORK:SCI PI 研讨会;
  • 批准号:
    0413328
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
STI: XCP Development
STI:XCP 开发
  • 批准号:
    0334186
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EIN: Collaborative Research: Dynamic Resource Allocation via GMPLS Optical Networks
EIN:协作研究:通过 GMPLS 光网络进行动态资源分配
  • 批准号:
    0335300
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
LATTICED: An Algebra for Intrusion Correlation
LATTICED:入侵相关性的代数
  • 批准号:
    0209046
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了