Fourier Techniques in Cryptography and Coding

密码学和编码中的傅立叶技术

基本信息

  • 批准号:
    0634909
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

Fourier techniques in cryptography and codingDaniele Micciancio (UCSD)August 31, 2006AbstractDigital computers and communication networks are routinely used in a growing number of security sensitive applications, like on-line shopping, on-line banking, etc. Cryptographic primitives (i.e., the basic operations performed by computers to protect their data) play a fundamental role in securing the digital world, so our confidence in their security is paramount. Unfortunately, for the sake of efficiency (i.e., fast execution by computers), many cryptographic primitives used in practice are not supported by mathematical proofs of security. This research investigates the design and analysis of cryptographic primitives that are both very efficient and provably secure in a rigorous mathematical sense. The project builds on mathematical techniques and problems (mostly from the areas of Fourier analysis and point lattices) that are interesting in a broader perspective, beyond security, with potential applications to other areas of mathematics and engineering.There is a wide and discomfortable gap between the current state of the art in practical crypto- graphic design and theoretical cryptography. Ad-hoc design methods offer cryptographic primitives whose efficiency is unmatched by theoretical constructions, but at the price of loosing every security guarantee. This research addresses this gap by investigating constructions (of hash functions and other cryptographic primitives) that are both efficient and provably secure. The investigators consider computational problems mostly from the areas of point lattices, coding theory and algebraic number theory. Efficiency is achieved considering problems with special structure (e.g., cyclic lattices), and Fourier techniques (whose development is an integral part of the project) both as algorithmic design and security analysis tools.
密码学和编码中的傅立叶技术Daniele Micciancio(UCSD)2006年8月31日摘要数字计算机和通信网络通常用于越来越多的安全敏感应用中,如在线购物、在线银行等。电脑为保护其资料而进行的基本操作),在保障数码世界的安全方面担当重要角色,因此我们对电脑的保安有信心是至为重要的。不幸的是,为了效率(即,计算机的快速执行),但实际上使用的许多密码原语并不受安全性的数学证明的支持。本研究探讨了密码原语的设计和分析,这些原语在严格的数学意义上是非常有效和可证明安全的。该项目建立在数学技术和问题(主要来自傅立叶分析和点格领域)的基础上,这些技术和问题在更广泛的角度上是有趣的,超越了安全性,具有对数学和工程学其他领域的潜在应用。特设设计方法提供密码原语,其效率是理论构造无法比拟的,但代价是失去每一个安全保证。本研究通过研究既有效又可证明安全的构造(哈希函数和其他密码原语)来解决这一差距。研究者主要从点格、编码理论和代数数论等领域来考虑计算问题。考虑到具有特殊结构的问题(例如,循环格)和傅立叶技术(其开发是该项目的一个组成部分)作为算法设计和安全分析工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniele Micciancio其他文献

Almost Perfect Lattices, the Covering Radius Problem, and Applications to Ajtai's Connection Factor
  • DOI:
    10.1137/s0097539703433511
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniele Micciancio
  • 通讯作者:
    Daniele Micciancio
The hardness of the closest vector problem with preprocessing
  • DOI:
    10.1109/18.915688
  • 发表时间:
    2001-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniele Micciancio
  • 通讯作者:
    Daniele Micciancio
On the Hardness of Learning With Errors with Binary Secrets
  • DOI:
    10.4086/toc.2018.v014a013
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniele Micciancio
  • 通讯作者:
    Daniele Micciancio
An Oblivious Data Structure and its Applications to Cryptography
一种不经意的数据结构及其在密码学中的应用
A fully classical LLL algorithm for modules
完全经典的模块 LLL 算法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gabrielle De Micheli;Daniele Micciancio
  • 通讯作者:
    Daniele Micciancio

Daniele Micciancio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniele Micciancio', 18)}}的其他基金

SaTC: CORE: Small: Modular, Efficient, Homomorphic Cryptography
SaTC:核心:小型:模块化、高效、同态密码学
  • 批准号:
    1936703
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Small: Functional Reactive Cryptography
TWC:小:功能反应式密码学
  • 批准号:
    1528068
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TC: Small: Algorithmics and Security of Lattice Cryptography
TC:小:格密码学的算法和安全性
  • 批准号:
    1117936
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CT-ISG: Real Time Cryptography
CT-ISG:实时密码学
  • 批准号:
    0831536
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: High Fidelity Methods for Security Protocols
合作研究:安全协议的高保真方法
  • 批准号:
    0430595
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ITR: Cryptography: from user needs to protocol design
ITR:密码学:从用户需求到协议设计
  • 批准号:
    0313241
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Geometric Methods in Cryptography
职业:密码学中的几何方法
  • 批准号:
    0093029
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
  • 批准号:
    24K06129
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
  • 批准号:
    24K17691
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
  • 批准号:
    10087309
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
  • 批准号:
    EP/Y035933/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了