Collaborative Research: Spectral Graph Theory and Its Applications
合作研究:谱图理论及其应用
基本信息
- 批准号:0634957
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spectral Graph Theory or Algebraic Graph Theory, as it is also known,is the study of the relationship between the eigenvalues andeigenvectors of graphs and their combinatorial properties. Randomwalks on graphs, expander graphs, clustering, and several othercombinatorial aspects of graphs are intimately connected to theirspectral properties. Recent approaches to the analysis ofhigh-dimensional data have exploited the fundamental eigenvectors ofthe data. These data sets are large and ever increasing requiring``real-time" accurate responses to the given queries. This creates theneed for very fast algorithms, that also provide strict theoreticalguarantees on their output. Spectral techniques have been applied to imageprocessing, both by computers and in the primary visual cortex ofmonkeys. Critical component to all these application is algorithmswith efficiency and accuracy guarantees for solving these linear systemand finding their fundamental eigenvectors.A multidisciplinary team consisting of Theoretical ComputerScientists, Machine Learning Scientist, and Neuroscientist willdevelop and apply spectral graph theory to applications from datamining to clustering, and image processing. Enabling technologydevelop will include: 1) linear-work or O(m log m)-work algorithmsthat run in poly-logarithmic parallel time for computing extremeeigenvalues and generalized eigenvalues of diagonally-dominantmatrices, including Laplacian matrices, as well as algorithms ofsimilar complexity for solving the related linear systems. 2) Betterestimates for Fiedler values and generalized Fiedler values.Application development: 1) Improvements in spectral imagesegmentation. 2) The use of generalized eigenvalues in data mining andimage segmentation to combine multiple sources of information. 3) Theuse of preconditioners for approximate inference in graphical models.and 4) Combine insights into the problem of image segmentation gainedfrom spectral algorithms with knowledge gained from recent experiments in visual systemof monkeys to better understand how the primary visual cortex functions.
谱图论或代数图论,因为它也被称为,是研究图的特征值和特征向量之间的关系及其组合性质。图上的随机游动、扩展图、聚类和图的其他几个组合方面都与它们的谱性质密切相关。 最近的高维数据分析方法利用了数据的基本特征向量。这些数据集很大,而且不断增加,需要对给定的查询作出“实时”准确的答复。这就需要非常快的算法,同时也为它们的输出提供严格的理论保证。光谱技术已被计算机和猴子的初级视觉皮质应用于图像处理。 所有这些应用程序的关键组成部分是算法的效率和准确性保证解决这些线性系统,并找到他们的基本特征向量。一个多学科的团队组成的理论计算机科学家,机器学习科学家和神经科学家将开发和应用谱图理论的应用程序,从数据挖掘到聚类,和图像处理。 使能技术开发将包括:1)线性工作或O(m log m)工作算法,在多对数并行时间内运行,用于计算对角占优矩阵(包括拉普拉斯矩阵)的极端特征值和广义特征值,以及类似复杂度的算法求解相关线性系统。2)Fiedler值和广义Fiedler值的改进估计.应用开发:1)光谱图像分割的改进. 2)在数据挖掘和图像分割中使用广义特征值来联合收割机组合多个信息源。3)图模型中近似推理的预处理器的使用; 4)联合收割机将光谱算法中图像分割问题的见解与最近在猴子视觉系统中的实验中获得的知识结合起来,以更好地理解初级视觉皮层的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Spielman其他文献
35. Efficacy of Ketamine in Unmedicated Adults With OCD: A Randomized Controlled Trial
- DOI:
10.1016/j.biopsych.2023.02.218 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Carolyn Rodriguez;Chi-Ming Chen;Gary Glover;Booil Jo;Daniel Spielman;Leanne Williams;Peter van Roessel;Charles DeBattista;Max Wintermark;Anthony Lombardi;Anthony Pinto;Keara Valentine;Maria Filippou-Frye;Jessica Hawkins;Elizabeth McCarthy;Pavithra Mukunda;Andrea Varias;Jordan Wilson;Brianna Wright - 通讯作者:
Brianna Wright
1.10 THALAMIC METABOLITE LEVELS AND SENSORY PROCESSING IN TWINS WITH AUTISM SPECTRUM DISORDER
- DOI:
10.1016/j.jaac.2016.09.011 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
John P. Hegarty;Meng Gu;Daniel Spielman;Sue Cleveland;Joachim J. Hallmayer;Laura C. Lazzeroni;Mira Raman;Julio Monterrey;Thomas Frazier;Jennifer M. Phillips;Allan L. Reiss;Antonio Hardan - 通讯作者:
Antonio Hardan
The power of adaptiveness and additional queries in random-self-reductions
- DOI:
10.1007/bf01202287 - 发表时间:
1994-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Joan Feigenbaum;Lance Fortnow;Carsten Lund;Daniel Spielman - 通讯作者:
Daniel Spielman
310. Simultaneous [18F]Flumazenil-Positron Emission Tomography and GABA-Magnetic Resonance Spectroscopy in Adults with Autism and Healthy Volunteers
- DOI:
10.1016/j.biopsych.2017.02.325 - 发表时间:
2017-05-15 - 期刊:
- 影响因子:
- 作者:
Lawrence Fung;Ryan Flores;Meng Gu;Trine Hjoernevik;Antonio Hardan;Daniel Spielman;Frederick Chin - 通讯作者:
Frederick Chin
508 - Proton specfroscopy reveals normal naa concentration in cortical gray mastter in schizophrenic patients
- DOI:
10.1016/s0920-9964(97)82516-9 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:
- 作者:
Kelvin O. Lim;Elfar Adalsteinsson;Daniel Spielman;Edith V. Sullivan;Adolf Pfefferbaum - 通讯作者:
Adolf Pfefferbaum
Daniel Spielman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Spielman', 18)}}的其他基金
AF: Medium: Generalized Algebraic Graph Theory: Algorithms and Analysis
AF:中:广义代数图论:算法与分析
- 批准号:
1562041 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Algebraic Graph Algorithms: The Laplacian and Beyond
AF:大型:协作研究:代数图算法:拉普拉斯算子及其他算法
- 批准号:
1111257 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Spectral Graph Theory, Point Clouds, and Linear Equation Solvers
AF:小:谱图理论、点云和线性方程求解器
- 批准号:
0915487 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral Methods: Algorithms and Applications
谱方法:算法和应用
- 批准号:
0634904 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
ITR: Collaborative Research: Smoothed Analysis of Algorithms
ITR:协作研究:算法的平滑分析
- 批准号:
0707522 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR: Collaborative Research: Smoothed Analysis of Algorithms
ITR:协作研究:算法的平滑分析
- 批准号:
0324914 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/SY(CISE): Why algorithms work well in practice: pertubation-based average-case analysis of the simplex algorithm and beyond
ITR/SY(CISE):为什么算法在实践中表现良好:单纯形算法及其他算法的基于扰动的平均情况分析
- 批准号:
0112487 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Computationally Efficient Error-Correcting Codes and Their Applications
职业:计算高效的纠错码及其应用
- 批准号:
9701304 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508950 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229473 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313234 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Robotic Perception and Manipulation via Full-Spectral Wireless Sensing
合作研究:CPS:媒介:通过全光谱无线传感进行机器人感知和操纵
- 批准号:
2313233 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
- 批准号:
2246547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
- 批准号:
2246548 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229472 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant