SGER: Exploring Universal Acoustic Characterization of Spoken Languages

SGER:探索口语的普遍声学特征

基本信息

  • 批准号:
    0639204
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-15 至 2009-01-31
  • 项目状态:
    已结题

项目摘要

Exploring Universal Acoustic Characterization of Spoken LanguagesAbstractWe explore a novel approach to modeling all human languages by assuming that the sound characteristics of spoken languages can be covered by a universal set of acoustic units with no direct link to conventional phonetic definitions. Their corresponding models, called acoustic segment models (ASMs), can be used to decode spoken utterances into strings of such units. The statistics of these units and their co-occurrences corresponding to utterances in a training set of a particular language can be used to construct feature vectors to build vector-based language classifiers for automatic spoken language identification (LID). For spoken queries, ASM-derived feature vectors are extracted in a similar manner and then used to discriminate individual spoken languages. This collection of ASMs can be established from bottom up in an unsupervised manner, and will serve as models of acoustic alphabets to construct acoustic lexicons for speech recognition and language identification. In the project we study three fundamental issues related to UAC, namely: (1) acoustic coverage and resolution of acoustic units needed to model spoken languages; (2) complexity and discriminative power of UAC-derived features for spoken language identification; and (3) relationship of language cues with UAC units for modeling spoken languages. This research facilitates a better understanding of human identification of spoken languages through acoustic and linguistic cues, and provides mathematical modeling and computing techniques to build LID systems. We also intend to leverage our research results in another NSF grant on automatic speech attribute transcription (ASAT) to model salient speech cues for language characterization and their relevance to auditory perception. The entire collection of available language cues, including phones, syllables, words, prosody, and lexical cues, can also be incorporated into this synergistic approach to spoken language modeling and identification.
探索通用的声学特性的口语abstractWe探索一种新的方法来模拟所有人类语言的假设,口语的声音特征可以被一组通用的声学单位,没有直接联系到传统的语音定义。它们对应的模型,称为声学段模型(ASMs),可用于将口语解码成这样的单元的串。这些单元的统计数据及其对应于特定语言的训练集中的话语的共现可以用于构造特征向量以构建用于自动口语识别(LID)的基于向量的语言分类器。对于口语查询,ASM派生的特征向量以类似的方式提取,然后用于区分个别口语。这个集合的ASM可以建立自下而上在一个无监督的方式,并将作为模型的声学字母,以构建声学词典的语音识别和语言识别。在该项目中,我们研究了与UAC相关的三个基本问题,即:(1)建模口语所需的声学单元的声学覆盖率和分辨率;(2)用于口语识别的UAC衍生特征的复杂性和区分能力;以及(3)语言线索与建模口语的UAC单元的关系。这项研究有助于更好地理解人类通过声学和语言线索识别口语,并提供数学建模和计算技术来构建LID系统。我们还打算利用我们的研究成果,在另一个美国国家科学基金会资助的自动语音属性转录(ASAT)模型突出的语音线索的语言特征及其相关性的听觉感知。可用的语言线索的整个集合,包括音素、音节、单词、韵律和词汇线索,也可以被并入这种协同方法中以进行口语建模和识别。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chin-Hui Lee其他文献

A Reverberation-Time-Aware Approach to Speech Dereverberation Based on Deep Neural Network
基于深度神经网络的混响时间感知语音去混响方法
On stochastic feature and model compensation approaches to robust speech recognition
  • DOI:
    10.1016/s0167-6393(98)00028-4
  • 发表时间:
    1998-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chin-Hui Lee
  • 通讯作者:
    Chin-Hui Lee
Speech Enhancement Based on Deep Neural Networks
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Chin-Hui Lee
  • 通讯作者:
    Chin-Hui Lee
Improving Deep Neural Network Based Speech Synthesis through Contextual Feature Parametrization and Multi-Task Learning
通过上下文特征参数化和多任务学习改进基于深度神经网络的语音合成
  • DOI:
    10.1007/s11265-017-1293-z
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    温正棋;Kehuang Li;Zhen Huang;Chin-Hui Lee;陶建华
  • 通讯作者:
    陶建华
A Multi-Target SNR-Progressive Learning Approach to Regression Based Speech Enhancement
基于回归的语音增强的多目标信噪比渐进学习方法

Chin-Hui Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chin-Hui Lee', 18)}}的其他基金

ITR-(NHS+ASE)-(int+dmc+sim) Automatic Speech Attribute Transcription (ASAT): A Collaborative Speech Research Paradigm and Cyberinfrastructure with Applications to Automatic Speech
ITR-(NHS ASE)-(int dmc sim) 自动语音属性转录 (ASAT):协作语音研究范式和网络基础设施及其在自动语音中的应用
  • 批准号:
    0427413
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
2003 Symposium on Next Generation Automatic Speech Recognition (ASR)
2003年下一代自动语音识别(ASR)研讨会
  • 批准号:
    0352730
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Exploring New Auditory Perception Based Approaches to ASR
SGER:探索基于听觉的新 ASR 方法
  • 批准号:
    0350408
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring Changing Fertility Intentions in China
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

EMPOWHPVR: Exploring the factors that impact HPV self-sampling uptake amongst Black women and people with a cervix in Peel region, Ontario
EMPOWHPVR:探讨影响安大略省皮尔地区黑人女性和宫颈癌患者 HPV 自我采样率的因素
  • 批准号:
    502585
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Exploring volcanic arcs as factories of critical minerals
探索火山弧作为关键矿物工厂
  • 批准号:
    FT230100230
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
  • 批准号:
    ES/Y00860X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Exploring factors affecting the disability pay gap
探讨影响伤残工资差距的因素
  • 批准号:
    ES/Z50242X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Women's mental illness in pregnancy: Exploring contact with secondary mental health services and links with offspring health and education outcomes
妇女妊娠期精神疾病:探索与二级心理健康服务的联系以及与后代健康和教育成果的联系
  • 批准号:
    ES/Z502492/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
  • 批准号:
    BB/Y000560/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
  • 批准号:
    2333139
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Exploring fire as medicine to revitalize cultural burning in the Upper Midwest
规划:FIRE-PLAN:探索火作为药物,以振兴中西部北部的文化燃烧
  • 批准号:
    2349282
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了