CAREER: Random Surfaces and Conformal Probability
职业:随机曲面和共形概率
基本信息
- 批准号:0645585
- 负责人:
- 金额:$ 59.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will study spatial problems of probability theory, with a particular focus on random surfaces and two dimensional random objects with conformal symmetries, such as planar Brownian motion, the Gaussian free field, the Schramm-Loewner evolution, and the conformal loop ensembles. In addition to their intrinsic beauty, these objects find applications in quantum field theory, statistical physics, and the theory of random surfaces. A guiding principle of the proposer's research is that many problems in stochastic geometry are best understood in terms of random surfaces and height functions (in discrete settings) and random distributions such as the Gaussian free field (in continuum settings).Two dimensional random geometries are important in part because many problems in statistical physics (such as the way crystal surfaces fluctuate) are essentially two dimensional. Since the path-breaking work of Belavin, Polyakov, and Zamolodchikov in the 1970's and 1980's, it has been understood---at least heuristically---that the laws of certain macroscopic observables of these systems should be invariant under conformal maps from one planar domain to another. Over the past two decades, physicists have developed sophisticated non-rigorous techniques for understanding the properties of random objects with conformal symmetries. During the past few years, several mathematicians have begun to rigorously prove some of the predictions from the physics literature, along with many additional results. Many of the these problems have natural higher dimensional analogs that we are only beginning to understand. The investigator's proposed activities include efforts to bring new graduate students into this emerging field and to assist them in their studies and careers.
研究人员将研究概率论的空间问题,特别关注随机表面和具有共形对称性的二维随机对象,如平面布朗运动,高斯自由场,Schramm-Loewner演化和共形循环系综。 除了它们内在的美,这些物体在量子场论、统计物理和随机表面理论中也有应用。 提出者研究的指导原则是,随机几何中的许多问题最好用随机表面和高度函数(离散设置)以及随机分布(如高斯自由场(连续设置))来理解。二维随机几何很重要,部分原因是统计物理中的许多问题(如晶体表面波动的方式)本质上是二维的。 自从Belavin,Polyakov和Zamolodchikov在20世纪70年代和80年代的开创性工作以来,人们已经理解-至少在理论上-这些系统的某些宏观可观测量的定律在从一个平面域到另一个平面域的共形映射下应该是不变的。 在过去的二十年里,物理学家已经发展出复杂的非严格技术来理解具有共形对称性的随机物体的性质。在过去的几年里,几位数学家已经开始严格证明物理学文献中的一些预测,沿着有许多额外的结果。 这些问题中的许多都有我们刚刚开始理解的自然的更高维度的类似物。 调查员提议的活动包括努力使新的研究生进入这一新兴领域,并协助他们的学习和职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Sheffield其他文献
Liouville quantum gravity and the Brownian map I: the $$\mathrm{QLE}(8/3,0)$$ metric
- DOI:
10.1007/s00222-019-00905-1 - 发表时间:
2019-07-19 - 期刊:
- 影响因子:3.600
- 作者:
Jason Miller;Scott Sheffield - 通讯作者:
Scott Sheffield
Delocalization of Uniform Graph Homomorphisms from $${\mathbb {Z}}^2$$ to $${\mathbb {Z}}$$
- DOI:
10.1007/s00220-021-04181-0 - 发表时间:
2021-09-13 - 期刊:
- 影响因子:2.600
- 作者:
Nishant Chandgotia;Ron Peled;Scott Sheffield;Martin Tassy - 通讯作者:
Martin Tassy
Scott Sheffield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Sheffield', 18)}}的其他基金
Random Surfaces and Related Questions
随机曲面及相关问题
- 批准号:
2153742 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
Probabilistic and Analytic Aspects of the Loewner Energy
勒纳能量的概率和分析方面
- 批准号:
1953945 - 财政年份:2020
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
Universal Randomness in Dimension 2
2 维中的普遍随机性
- 批准号:
1712862 - 财政年份:2017
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
Gaussian Free Field and Conformal Loop Ensemble
高斯自由场和共形环系综
- 批准号:
1406411 - 财政年份:2014
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
Liouville quantum gravity and conformal probability
刘维尔量子引力和共形概率
- 批准号:
1209044 - 财政年份:2012
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
CAREER: Random Surfaces and Conformal Probability
职业:随机曲面和共形概率
- 批准号:
0946296 - 财政年份:2009
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
相似海外基金
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
Spectral statistics for random hyperbolic surfaces
随机双曲曲面的谱统计
- 批准号:
EP/W007010/1 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Research Grant
Random Surfaces and Related Questions
随机曲面及相关问题
- 批准号:
2153742 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
Random embeddings of graphs on surfaces
图在表面上的随机嵌入
- 批准号:
564291-2021 - 财政年份:2021
- 资助金额:
$ 59.96万 - 项目类别:
University Undergraduate Student Research Awards
Spectral gaps of random finite-area hyperbolic surfaces
随机有限面积双曲曲面的谱隙
- 批准号:
2457694 - 财政年份:2020
- 资助金额:
$ 59.96万 - 项目类别:
Studentship
Persistent Homology for Random Points, Curves, and Surfaces
随机点、曲线和曲面的持久同调
- 批准号:
466740-2014 - 财政年份:2014
- 资助金额:
$ 59.96万 - 项目类别:
University Undergraduate Student Research Awards
Random Belyi surfaces
随机 Belyi 曲面
- 批准号:
447871-2013 - 财政年份:2013
- 资助金额:
$ 59.96万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Random Surfaces and Conformal Probability
职业:随机曲面和共形概率
- 批准号:
0946296 - 财政年份:2009
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant